Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancers (Basel) ; 16(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254882

RESUMO

While the transmembrane glycoprotein mucin 1 (MUC1) is clustered at the apical borders of normal epithelial cells, with transformation and loss of polarity, MUC1 is found at high levels in the cytosol and is uniformly distributed over the entire surface of carcinoma cells, where it can promote tumor progression and adversely affects the response to therapy. Clear cell renal cell carcinoma (ccRCC), the main histotype of kidney cancer, is typically highly resistant to conventional and targeted therapies for reasons that remain largely unknown. In this context, we investigated whether MUC1 also plays a pivotal role in the cellular and molecular events driving ccRCC progression and chemoresistance. We showed, using loss- and gain-of-function approaches in ccRCC-derived cell lines, that MUC1 not only influences tumor progression but also induces a multi-drug-resistant profile reminiscent of the activation of ABC drug efflux transporters. Overall, our results suggest that targeting MUC1 may represent a novel therapeutic approach to limit ccRCC progression and improve drug sensitivity.

2.
Pharmacogenomics J ; 24(1): 1, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216550

RESUMO

Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.


Assuntos
Antimetabólitos Antineoplásicos , Di-Hidrouracila Desidrogenase (NADP) , Testes Farmacogenômicos , Humanos , Antimetabólitos Antineoplásicos/efeitos adversos , Biomarcadores , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Genótipo , Farmacogenética/métodos , Testes Farmacogenômicos/métodos
3.
Cell Death Dis ; 14(9): 603, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704611

RESUMO

Non-small cell lung cancer is characterized by a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Therefore, the identification of new molecular determinants underlying sensitivity of cancer cells to existing therapy is of particular importance to develop new effective combinatorial treatment strategy. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been established as master regulators of a variety of cellular processes that play a key role in tumor initiation, progression and metastasis. This, along with their widespread deregulation in many distinct cancers, has triggered enthusiasm for miRNAs as novel therapeutic targets for cancer management, in particular in patients with refractory cancers such as those harboring KRAS mutations. In this study, we performed a loss-of-function screening approach to identify miRNAs whose silencing promotes sensitivity of lung adenocarcinoma (LUAD) cells to cisplatin. Our results showed in particular that antisense oligonucleotides directed against miR-92a-3p, a member of the oncogenic miR-17 ~ 92 cluster, caused the greatest increase in the sensitivity of KRAS-mutated LUAD cells to cisplatin. In addition, we demonstrated that this miRNA finely regulates the apoptotic threshold and the proliferative capacity of various tumor cell lines with distinct genetic alterations. Collectively, these data suggest that targeting miR-92a-3p may serve as an effective strategy to overcome treatment resistance of solid tumors.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Morte Celular
4.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377661

RESUMO

Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.


Assuntos
Antineoplásicos , Neuralgia , Animais , Camundongos , Cisplatino/efeitos adversos , Purinas/farmacologia , Neuralgia/induzido quimicamente , Receptor A2A de Adenosina , Antineoplásicos/efeitos adversos
5.
Cancers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944818

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PDAC) is a deadly cancer with an extremely poor prognosis. MUC4 membrane-bound mucin is neoexpressed in early pancreatic neoplastic lesions and is associated with PDAC progression and chemoresistance. In cancers, microRNAs (miRNAs, small noncoding RNAs) are crucial regulators of carcinogenesis, chemotherapy response and even metastatic processes. In this study, we aimed at identifying and characterizing miRNAs activated downstream of MUC4-associated signaling in pancreatic adenocarcinoma. MiRnome analysis comparing MUC4-KD versus Mock cancer cells showed that MUC4 inhibition impaired miR-210-3p expression. Therefore, we aimed to better understand the miR-210-3p biological roles. METHODS: miR-210-3p expression level was analyzed by RT-qPCR in PDAC-derived cell lines (PANC89 Mock and MUC4-KD, PANC-1 and MiaPACA-2), as well as in mice and patients tissues. The MUC4-miR-210-3p regulation was investigated using luciferase reporter construct and chromatin immunoprecipitation experiments. Stable cell lines expressing miR-210-3p or anti-miR-210-3p were established using CRISPR/Cas9 technology or lentiviral transduction. We evaluated the biological activity of miR-210-3p in vitro by measuring cell proliferation and migration and in vivo using a model of subcutaneous xenograft. RESULTS: miR-210-3p expression is correlated with MUC4 expression in PDAC-derived cells and human samples, and in pancreatic PanIN lesions of Pdx1-Cre; LstopL-KrasG12D mice. MUC4 enhances miR-210-3p expression levels via alteration of the NF-κB signaling pathway. Chromatin immunoprecipitation experiments showed p50 NF-κB subunit binding on miR-210-3p promoter regions. We established a reciprocal regulation since miR-210-3p repressed MUC4 expression via its 3'-UTR. MiR-210-3p transient transfection of PANC89, PANC-1 and MiaPACA-2 cells led to a decrease in cell proliferation and migration. These biological effects were validated in cells overexpressing or knocked-down for miR-210-3p. Finally, we showed that miR-210-3p inhibits pancreatic tumor growth and proliferation in vivo. CONCLUSION: We identified a MUC4-miR-210-3p negative feedback loop in early-onset PDAC, but also revealed new functions of miR-210-3p in both in vitro and in vivo proliferation and migration of pancreatic cancer cells, suggesting a complex balance between MUC4 pro-oncogenic roles and miR-210-3p anti-tumoral effects.

6.
Cancers (Basel) ; 12(11)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182511

RESUMO

Mucins are commonly associated with pancreatic ductal adenocarcinoma (PDAC) that is a deadly disease because of the lack of early diagnosis and efficient therapies. There are 22 mucin genes encoding large O-glycoproteins divided into two major subgroups: membrane-bound and secreted mucins. We investigated mucin expression and their impact on patient survival in the PDAC dataset from The Cancer Genome Atlas (PAAD-TCGA). We observed a statistically significant increased messenger RNA (mRNA) relative level of most of the membrane-bound mucins (MUC1/3A/4/12/13/16/17/20), secreted mucins (MUC5AC/5B), and atypical mucins (MUC14/18) compared to normal pancreas. We show that MUC1/4/5B/14/17/20/21 mRNA levels are associated with poorer survival in the high-expression group compared to the low-expression group. Using unsupervised clustering analysis of mucin gene expression patterns, we identified two major clusters of patients. Cluster #1 harbors a higher expression of MUC15 and atypical MUC14/MUC18, whereas cluster #2 is characterized by a global overexpression of membrane-bound mucins (MUC1/4/16/17/20/21). Cluster #2 is associated with shorter overall survival. The patient stratification appears to be independent of usual clinical features (tumor stage, differentiation grade, lymph node invasion) suggesting that the pattern of membrane-bound mucin expression could be a new prognostic marker for PDAC patients.

7.
Cancers (Basel) ; 10(8)2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065235

RESUMO

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-ß signaling pathway (SMAD4 or TGF-ßRII) are frequently mutated in PDAC (50⁻80%). TGF-ß signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-ß in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-ßRII (first actor of TGF-ß signaling). The impact on biological properties of these TGF-ßRII-KD cells was studied both in vitro and in vivo. We show that TGF-ßRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-ßRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-ß signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA