Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001057

RESUMO

By 2030, it is expected that a trillion things will be connected. In such a scenario, the power required for the trillion nodes would necessitate using trillions of batteries, resulting in maintenance challenges and significant management costs. The objective of this research is to contribute to sustainable wireless sensor nodes through the introduction of an energy-autonomous wireless sensor node (EAWSN) designed to be an energy-autonomous, self-sufficient, and maintenance-free device, to be suitable for long-term mass-scale internet of things (IoT) applications in remote and inaccessible environments. The EAWSN utilizes Low-Power Wide Area Networks (LPWANs) via LoRaWAN connectivity, and it is powered by a commercial photovoltaic cell, which can also harvest ambient light in an indoor environment. Storage components include a capacitor of 2 mF, which allows EAWSN to successfully transmit 30-byte data packets up to 560 m, thanks to opportunistic LoRaWAN data rate selection that enables a significant trade-off between energy consumption and network coverage. The reliability of the designed platform is demonstrated through validation in an urban environment, showing exceptional performance over remarkable distances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA