Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Nanobiotechnology ; 22(1): 255, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755672

RESUMO

Age is the most important risk factor in degenerative diseases such as osteoarthritis (OA), which is associated with the accumulation of senescent cells in the joints. Here, we aimed to assess the impact of senescence on the therapeutic properties of extracellular vesicles (EVs) from human fat mesenchymal stromal cells (ASCs) in OA. We generated a model of DNA damage-induced senescence in ASCs using etoposide and characterized EVs isolated from their conditioned medium (CM). Senescent ASCs (S-ASCs) produced 3-fold more EVs (S-EVs) with a slightly bigger size and that contain 2-fold less total RNA. Coculture experiments showed that S-ASCs were as efficient as healthy ASCs (H-ASCs) in improving the phenotype of OA chondrocytes cultured in resting conditions but were defective when chondrocytes were proliferating. S-EVs were also impaired in their capacity to polarize synovial macrophages towards an anti-inflammatory phenotype. A differential protein cargo mainly related to inflammation and senescence was detected in S-EVs and H-EVs. Using the collagenase-induced OA model, we found that contrary to H-EVs, S-EVs could not protect mice from cartilage damage and joint calcifications, and were less efficient in protecting subchondral bone degradation. In addition, S-EVs induced a pro-catabolic and pro-inflammatory gene signature in the joints of mice shortly after injection, while H-EVs decreased hypertrophic, catabolic and inflammatory pathways. In conclusion, S-EVs are functionally impaired and cannot protect mice from developing OA.


Assuntos
Senescência Celular , Condrócitos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Humanos , Camundongos , Condrócitos/metabolismo , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Dano ao DNA
3.
Mater Today Bio ; 19: 100581, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896417

RESUMO

Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.

4.
Adv Drug Deliv Rev ; 175: 113836, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166759

RESUMO

Osteoarthritis (OA) is a common age-related disease that correlates with a high number of senescent cells in joint tissues. Senescence has been reported to be one of the main drivers of OA pathogenesis, in particular via the release of senescence-associated secretory phenotype (SASP) factors. SASP factors are secreted as single molecules and/or packaged within extracellular vesicles (EVs), thereby contributing to senescent phenotype dissemination. Targeting senescent cells using senolytics or senomorphics has therefore been tested and improvement of OA-associated features has been reported in murine models. Mesenchymal stromal cells (MSCs) and their derived EVs (MSC-EVs) are promising treatments for OA, exerting pleiotropic functions by producing a variety of factors. However, functions of MSCs and MSC-EVs are affected by aging. In this review, we discuss on the impact of the senescent environment on functions of aged MSC-EVs and on the anti-aging properties of MSC-EVs in the context of OA.


Assuntos
Envelhecimento/efeitos dos fármacos , Vesículas Extracelulares/patologia , Células-Tronco Mesenquimais/patologia , Osteoartrite/patologia , Envelhecimento/patologia , Animais , Humanos , Osteoartrite/tratamento farmacológico , Senoterapia/uso terapêutico
5.
Artigo em Inglês | MEDLINE | ID: mdl-33015001

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles, derived from mesenchymal stem/stromal cells (MSCs) exert similar effects as their parental cells, and are of interest for various therapeutic applications. EVs can act through uptake by the target cells followed by release of their cargo inside the cytoplasm, or through interaction of membrane-bound ligands with receptors expressed on target cells to stimulate downstream intracellular pathways. EV-based therapeutics may be directly used as substitutes of intact cells or after modification for targeted drug delivery. However, for the development of EV-based therapeutics, several production, isolation, and characterization requirements have to be met and the quality of the final product has to be tested before its clinical implementation. In this review, we discuss the challenges associated with the development of EV-based therapeutics and the regulatory specifications for their successful clinical translation.

6.
Front Cell Dev Biol ; 8: 107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154253

RESUMO

Aging is associated with high prevalence of chronic degenerative diseases that take a large part of the increasing burden of morbidities in a growing demographic of elderly people. Aging is a complex process that involves cell autonomous and cell non-autonomous mechanisms where senescence plays an important role. Senescence is characterized by the loss of proliferative potential, resistance to cell death by apoptosis and expression of a senescence-associated secretory phenotype (SASP). SASP includes pro-inflammatory cytokines and chemokines, tissue-damaging proteases, growth factors; all contributing to tissue microenvironment alteration and loss of tissue homeostasis. Emerging evidence suggests that the changes in the number and composition of extracellular vesicles (EVs) released by senescent cells contribute to the adverse effects of senescence in aging. In addition, age-related alterations in mesenchymal stem/stromal cells (MSCs) have been associated to dysregulated functions. The loss of functional stem cells necessary to maintain tissue homeostasis likely directly contributes to aging. In this review, we will focus on the characteristics and role of EVs isolated from senescent MSCs, the potential effect of MSC-derived EVs in aging and discuss their therapeutic potential to improve age-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA