Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 766: 142655, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33153746

RESUMO

Radium-226, an alpha emitter with half-life 1600 years, is ubiquitous in natural environments. Present in rocks and soils, it is also absorbed by vegetation. The efficiency of 226Ra uptake by plants from the soil is important to assess for the study of heavy metals uptake by plants, monitoring of radioactive pollution, and the biogeochemical cycle of radium in the Critical Zone. Using a thoroughly validated measurement method of effective 226Ra concentration (ECRa) in the laboratory, we compare ECRa values of the plant to that of the closest soil, and we infer the 226Ra soil-to-plant transfer ratio, RSP, for a total of 108 plant samples collected in various locations in France. ECRa values of plants range over five orders of magnitude with mean (min-max) of 1.66 ± 0.03 (0.020-113) Bq kg-1. Inferred RSP values range over four orders of magnitude with mean (min-max) of 0.0188 ± 0.0004 (0.00069-0.37). The mean RSP value of plants in granitic and metamorphic context (0.073 ± 0.002; n = 50) is significantly higher (12 ± 1 times) than that of plants in calcareous and sedimentary context (0.0058 ± 0.0002; n = 58). This difference, which cannot be attributed to a systematic difference in emanation coefficient, is likely due to the competition between calcium and radium. In a given substratum context, the compartments of a given plant species show coherent and decreasing RSP values in the following order (acropetal gradient): roots > bark > branches and stems ≈ leaves. Oak trees (Quercus genus) concentrate 226Ra more than other trees and plants in this set. While this study clearly demonstrates the influence of substratum on the 226Ra uptake by plants in non-contaminated areas, our measurement method appears as a promising practical tool to use for (phyto)remediation and its monitoring in uranium- and radium-contaminated areas.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Poluentes Radioativos do Solo , Urânio , França , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Urânio/análise
2.
Sci Total Environ ; 716: 136844, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059316

RESUMO

Carbon dioxide (CO2) concentration (CDC) is an essential parameter of underground atmospheres for safety and cave heritage preservation. In the Chauvet cave (South France), a world heritage site hosting unique paintings dated 36,000 years BP, a high-sensitivity monitoring, ongoing since 1997, revealed: 1) two compartments with a spatially uniform CDC, a large volume (A) (40,000 to 80,000 m3) with a mean value of 2.20 ± 0.01% vol. in 2016, and a smaller remote room (B) (2000 m3), with a higher mean value of 3.42 ± 0.01%; 2) large CDC annual variations with peak-to-peak amplitude of 2% and 1.6% in A and B, respectively; 3) long-term changes, with an increase of CDC and of its annual amplitude since 1997, then faster since 2013, reaching a maximum of 4.4% in B in 2017, decreasing afterwards. While a large effect of seasonal ventilation is ruled out, monitoring of seepage at two dripping points indicated that the main control of CDC seasonal reduction was transient infiltration. During periods of water deficit, calculated from surface temperature and rainfall, CDC systematically increased. The carbon isotopic composition of CO2, correlated with water excess, is consistent with a time-varying component of CO2 seeping from above. The CO2 flux, which is the primary driver of CDC in A and B, inferred using box modelling, was found to confirm the relationship between water excess and reduced CO2 flux into A, compatible with a more constant flux into B. A buoyancy-driven horizontal CO2 flow model in the vadose zone, hindered by water infiltration, is proposed. Similarly, pluri-annual and long-term CDC changes can likely be attributed to variations of water excess, but also to increasing vegetation density above the cave. As CDC controls the carbonate geochemistry, an increased variability of CDC raises concern for the preservation of the Chauvet cave paintings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA