Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Parasitol Drugs Drug Resist ; 10: 101-108, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430693

RESUMO

Current treatment of cutaneous leishmaniasis includes pentavalent antimonials as first-line drugs, but this therapy has shown severe adverse effects. An alternative to minimize this issue is based on combination therapy scheme with other drugs. In this study we analyzed the potential of the association of meglumine antimoniate (MA) with the oxiranes epoxy-α-lapachone (LAP) or epoxymethyl-lawsone (LAW). Results demonstrated that association between these drugs enhanced leishmanicidal activity on Leishmania (Leishmania) amazonensis infection. The compounds were tested in monotherapy or in combinations (3:1; 1:1 and 1:3) and reduced intracellular parasite numbers, measured by the endocytic index, in all tested conditions. The most effective combination regimens were MA/LAP or MA/LAW in 3:1 ratio, which achieved a reduction of 98.3% and 93.6% in the endocytic index, respectively. BALB/c mice challenged with L. (L.) amazonensis showed significant reduction in lesion size and parasite load in both footpad and lymph nodes, after four weeks of treatment. Although, MA, LAP or LAW monotherapy were able to control the evolution of lesions when compared to untreated animals (30%, 40% and 40% of reduction, respectively), the combination of MA/LAP and LAW in 3:1 ratio showed better results reducing 61.7 and 54.4%, respectively. The results indicate that the association of meglumine antimoniate to oxiranes lead to an increment in the antileishmanial activity and represent a promising approach for the cutaneous leishmaniasis treatment.


Assuntos
Antiprotozoários/administração & dosagem , Compostos de Epóxi/administração & dosagem , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Antimoniato de Meglumina/administração & dosagem , Animais , Antiprotozoários/química , Quimioterapia Combinada , Compostos de Epóxi/química , Feminino , Humanos , Leishmania/fisiologia , Leishmaniose Cutânea/parasitologia , Antimoniato de Meglumina/química , Camundongos , Camundongos Endogâmicos BALB C
2.
Molecules ; 23(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642584

RESUMO

Epoxymethoxylawsone is a naphthoquinone derivative promising as drug candidate for the treatment of leishmaniases. In the present work the effectiveness of epoxymethoxylawsone, and meglumine antimoniate on Leishmania (Leishmania) amazonensis parasites and on mice paw lesions of infected BALB/c mice was assessed. In an intracellular amastigotes assay, the half-maximal inhibitory concentration (IC50) value for epoxymethoxylawsone was slightly higher (1.7-fold) than that found for meglumine antimoniate. The efficacy of both drugs became more evident after 48 h of exposure when either the oxirane compound and reference drug reached 18-fold and 7.4-fold lower IC50 values (0.40 ± 0.001 µM and 0.60 ± 0.02 µM), respectively. Promastigotes were also affected by epoxymethoxylawsone after 24 h of incubation (IC50 = 45.45 ± 5.0 µM), but with IC50 6-fold higher than those found for intracellular amastigotes. Cytotoxicity analysis revealed that epoxymethoxylawsone (CC50 = 40.05 ± µM) has 1.7-fold higher effects than meglumine antimoniate (CC50 = 24.14 ± 2.6 µM). Treatment of the paw lesion in infected BALB/c mice with epoxymethoxy-lawsone led to a significant 27% reduction (p < 0.05) of the lesion size, for all administrated doses, compared to the control group. Lesion reduction was also detected after mice treatment with meglumine antimoniate, reaching 31.0% (0.23 mg of Sb(V)/Kg/day and 2.27 mg of Sb(V)/Kg/day) and 64.0% (22.7 mg of Sb(V)/Kg/day). In addition, mice lesion ultrastructural changes were evidenced in amastigotes. The set of data gathered here indicate that epoxymethoxylawsone has pronounced effects on parasites and merits furthering to the preclinical stage.


Assuntos
Antiprotozoários/administração & dosagem , Leishmaniose/tratamento farmacológico , Naftoquinonas/administração & dosagem , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Modelos Animais de Doenças , Feminino , Leishmania/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Meglumina/administração & dosagem , Meglumina/farmacologia , Antimoniato de Meglumina , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftoquinonas/química , Naftoquinonas/farmacologia , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacologia
3.
Biomed Res Int ; 2017: 9840210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798938

RESUMO

Leishmaniasis remains a serious public health problem in developing countries without effective control, whether by vaccination or chemotherapy. Part of the failure of leishmaniasis control is due to the lack of new less toxic and more effective drugs able to eliminate both the lesions and the parasite. Oxiranes derived from naphthoquinones now being assayed are promising drugs for the treatment of this group of diseases. The predicted pharmacokinetic properties and toxicological profiles of epoxy-α-lapachone and epoxymethoxy-lawsone have now been compared to those of meglumine antimoniate, and histological changes induced by these drugs in noninfected BALB/c mice tissues are described. Effects of these compounds on liver, kidney, lung, heart, and cerebral tissues of healthy mice were examined. The data presented show that both these oxiranes and meglumine antimoniate induce changes in all BALB/c mice tissues, with the lung, heart, and brain being the most affected. Epoxymethoxy-lawsone was the most toxic to lung tissue, while most severe damage was caused in the heart by epoxy-α-lapachone. Meglumine antimoniate caused mild-to-moderate changes in heart and lung tissues.


Assuntos
Compostos de Epóxi/efeitos adversos , Leishmaniose/tratamento farmacológico , Meglumina/efeitos adversos , Compostos Organometálicos/efeitos adversos , Animais , Compostos de Epóxi/farmacologia , Meglumina/farmacologia , Antimoniato de Meglumina , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Compostos Organometálicos/farmacologia
4.
Int J Parasitol Drugs Drug Resist ; 6(3): 154-164, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27490082

RESUMO

Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 µM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 µM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.


Assuntos
Aminoquinolinas/farmacologia , Heme/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/ultraestrutura
5.
Antimicrob Agents Chemother ; 59(4): 1910-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583728

RESUMO

Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm(2)), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm(2)) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm(2)). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compound's effects on the parasite.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , Naftoquinonas/farmacologia , Inibidores de Serina Proteinase/farmacologia , Animais , Antipaína/farmacologia , Simulação por Computador , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Serina Endopeptidases/metabolismo
6.
Exp Parasitol ; 147: 81-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25307687

RESUMO

In this work, we analyze the leishmanicidal effects of epoxy-α-lapachone on Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis. Promasigotes and amastigotes (inhabiting human macrophages) from both species were assayed to verify the compound's activity over the distinct morphological stages. The incubation with epoxy-α-lapachone led to a significant decrease in the numbers of promastigotes from both species in the cultures, in a dose-and time-dependent fashion. The survival of amastigotes inhabiting human macrophages was also drastically affected by the compound, as shown by the variations in the endocytic index. Our results indicate that the epoxy-α-lapachone has an antiparasitic effect over Leishmania in both morphological stages and may potentially affect a range of species in two distinct subgenera of this parasite.


Assuntos
Antiprotozoários/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Naftoquinonas/farmacologia , Antiprotozoários/química , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Naftoquinonas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA