Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Int Med Res ; 52(7): 3000605241264182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39082245

RESUMO

The role of lipoprotein (a) [Lp(a)] in cerebrovascular disease is a topic of importance. In this narrative review, pertinent studies have been leveraged to comprehensively examine this relationship from diverse perspectives.Lp(a) shares structural traits with low-density lipoprotein cholesterol. Lp(a) is synthesized by hepatocytes, and its plasma levels are genetically determined by the LPA gene, which produces apolipoprotein (a).Numerous epidemiological studies have confirmed the positive correlation between elevated serum Lp(a) levels and the occurrence or recurrence of cerebrovascular events, especially ischemic strokes, in adults. It should be noted that the correlation strength varies among studies and is marginal in Mendelian randomization studies.Regarding pediatric patients, screening is currently limited to those with a relevant medical history. Lp(a) seems to play a significant role in the pathogenesis of arterial ischemic stroke in children because environmental thrombotic and atherogenic factors are generally not present.Phase 3 trials of novel Lp(a) targeting agents, such as pelacarsen and olpasiran, are anticipated to demonstrate their efficacy in reducing the incidence of stroke. Given the richness of the literature, new guidelines regarding Lp(a) screening and management in targeted populations are warranted to provide more effective primary and secondary prevention.


Assuntos
Lipoproteína(a) , Humanos , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/diagnóstico , Fatores de Risco
2.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686428

RESUMO

Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predisposing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high. Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe. Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults. The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly. Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors, mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a reduction of 80-90% appears to be required to achieve a significant decrease in major cardiovascular events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction. Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small interfering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so far demonstrates that monthly subcutaneous administration of a single dose yields optimal results with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of Lp(a) levels with these novel agents may not be far off.


Assuntos
Estenose da Valva Aórtica , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemias , Adulto , Humanos , Apoproteína(a) , Lipoproteína(a) , Apolipoproteínas A
3.
Diagnostics (Basel) ; 13(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36900073

RESUMO

Atherosclerosis is an immunoinflammatory pathological procedure in which lipid plaques are formed in the vessel walls, partially or completely occluding the lumen, and is accountable for atherosclerotic cardiovascular disease (ASCVD). ACSVD consists of three components: coronary artery disease (CAD), peripheral vascular disease (PAD) and cerebrovascular disease (CCVD). A disturbed lipid metabolism and the subsequent dyslipidemia significantly contribute to the formation of plaques, with low-density lipoprotein cholesterol (LDL-C) being the main responsible factor. Nonetheless, even when LDL-C is well regulated, mainly with statin therapy, a residual risk for CVD still occurs, and it is attributable to the disturbances of other lipid components, namely triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C). Increased plasma TG and decreased HDL-C levels have been associated with metabolic syndrome (MetS) and CVD, and their ratio, TG/HDL-C, has been proposed as a novel biomarker for predicting the risk of both clinical entities. Under these terms, this review will present and discuss the current scientific and clinical data linking the TG/HDL-C ratio with the presence of MetS and CVD, including CAD, PAD and CCVD, in an effort to prove the value of the TG/HDL-C ratio as a valuable predictor for each aspect of CVD.

4.
J Int Med Res ; 51(3): 3000605231164548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994866

RESUMO

Insulin resistance (IR) and cardiovascular disease (CVD) represent two universal public health hazards, especially in today's Western societies. A causal-effect relationship has been established that links IR with CVD. The mediating mechanisms are perplexing, under ongoing, rigorous investigation and remain to be fully elucidated. IR is a condition encompassing hyperglycemia and compensatory hyperinsulinemia. It occurs when insulin is not capable of exerting its maximum effects on target tissues, including skeletal muscles, liver and adipose tissue. This alteration of insulin signaling pathways results in the development of cardiometabolic disorders, including obesity, dyslipidemia, low-grade inflammation, endothelial dysfunction and hypertension, all of which are predisposing factors for atherosclerosis and CVD. The management of IR can be achieved through dietary modifications, the inclusion of regular exercise routines in everyday life, pharmacological agents and other interventions tailored to each individual patient's needs. It is important to underline though that, although various antidiabetic drugs that may improve IR are available, no medications are as yet specifically approved for the treatment of IR. This narrative review will focus on the current scientific and clinical evidence pertaining to IR, the mechanisms connecting IR with CVD, as well as plausible strategies for a holistic, personalized approach for IR management.


Assuntos
Doenças Cardiovasculares , Hipertensão , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Obesidade/tratamento farmacológico , Insulina/uso terapêutico
5.
Clin Pharmacol ; 14: 49-59, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873366

RESUMO

Cardiovascular disease (CVD) is the most common cause of death in a global scale and significantly depends on the elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) and the subsequent formation of atherosclerotic plaques. While physicians have several LDL-C-lowering agents with diverse mechanisms of action, including statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and inclisiran, angiopoietin-like protein 3 (ANGPTL3) inhibitors have recently emerged as a powerful addition in the armamentarium of lipid-lowering strategies, especially for patients with refractory hypercholesterolemia, as in the case of patients with homozygous familial hypercholesterolemia (HoFH). ANGPTL3 protein is a glycoprotein secreted by liver cells that is implicated in the metabolism of lipids along with other ANGPTL proteins. These proteins inhibit lipoprotein lipase (LPL) and endothelial lipase (EL) in tissues. Loss-of-function mutations affecting the gene encoding ANGPTL3 are linked with lower total cholesterol, LDL-C, and triglyceride (TG) levels. Evinacumab is a monoclonal antibody that targets, binds to, and pharmacologically inhibits ANGPTL3, which was recently approved by the United States Food and Drug Administration (FDA) as a complementary agent to other LDL-C lowering regimens for patients aged 12 or older with HoFH, based on clinical trial evidence that confirmed its safety and efficacy in those patients. Antisense oligonucleotides (ASOs) also represent an interesting class of agents that target and inhibit the mRNA derived from the transcription of ANGPTL3 gene. This review aims to present and discuss the current clinical and scientific data pertaining to the role of ANGPTL3 inhibitors, a novel lipid-modifying class of agents capable of reducing LDL-C levels via a mechanism independent of LDL receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA