RESUMO
Phycoerythrin (PE) is a green light-absorbing protein present in the light-harvesting complex of cyanobacteria and red algae. The spectral characteristics of PE are due to its prosthetic groups, or phycoerythrobilins (PEBs), that are covalently attached to the protein chain by specific bilin lyases. Only two PE lyases have been identified and characterized so far, and the other bilin lyases are unknown. Here, using in silico analyses, markerless deletion, biochemical assays with purified and recombinant proteins, and site-directed mutagenesis, we examined the role of a putative lyase-encoding gene, cpeF, in the cyanobacterium Fremyella diplosiphon. Analyzing the phenotype of the cpeF deletion, we found that cpeF is required for proper PE biogenesis, specifically for ligation of the doubly linked PEB to Cys-48/Cys-59 residues of the CpeB subunit of PE. We also show that in a heterologous host, CpeF can attach PEB to Cys-48/Cys-59 of CpeB, but only in the presence of the chaperone-like protein CpeZ. Additionally, we report that CpeF likely ligates the A ring of PEB to Cys-48 prior to the attachment of the D ring to Cys-59. We conclude that CpeF is the bilin lyase responsible for attachment of the doubly ligated PEB to Cys-48/Cys-59 of CpeB and together with other specific bilin lyases contributes to the post-translational modification and assembly of PE into mature light-harvesting complexes.
Assuntos
Cianobactérias/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Cianobactérias/química , Ficobilinas/química , Ficoeritrina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismoRESUMO
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded ß barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Liases/química , Ficobiliproteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Análise EspectralRESUMO
Bilin chromophore attachment to phycobiliproteins is an enzyme-catalyzed post-translational modification process. Bilin-lyases attach a bilin chromophore to their cognate protein through a thioether bond between the chromophore and a cysteine moiety. Bilin chromophores are attached to their phycobiliproteins through the 3(1) carbon of the bilin. Double attachment may also occur, and in this case, carbons 3(1) and 18(1) of the bilin are both forming covalent linkages to cysteine moieties. There is a mass spectrometric limitation when examining tryptic peptides containing two (or more) cysteines if one seeks to ascertain whether chromopeptides are singly or doubly attached. The problem is that singly and doubly attached chromopeptides appear at the same m/z value; thus, up until the present, only NMR analysis has been successful at determining whether the chromophore is singly or doubly attached. We report in this work a new, fast and accurate method for discriminating singly from doubly attached chromophores using MALDI-TOF mass spectrometry. This method was developed from mass spectral analysis of chromopeptides that had undergone in vitro or in vivo attachment of bilin chromophores to phycobiliproteins. Distinction is based on a characteristic neutral loss that appears in the MALDI-TOF mass spectrum only when the bilin is singly attached.
Assuntos
Ficobilinas/química , Ficobiliproteínas/química , Ficoeritrina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cianobactérias/química , Fragmentos de Peptídeos/química , Tripsina/químicaRESUMO
The most common secondary-ionization mechanism in positive ion matrix-assisted laser desorption/ionization (MALDI) involves a proton transfer reaction to ionize the analyte. Peptides and proteins are molecules that have basic (and acidic) sites that make them susceptible to proton transfer. However, non-polar, aprotic compounds that lack basic sites are more difficult to protonate, and creating charged forms of this type of analyte can pose a problem when conventional MALDI matrices are employed. In this case, forming a radical molecular ion through electron transfer is a viable alternative, and certain matrices may facilitate the process. In this work, we investigate the performance of a newly developed electron-transfer secondary reaction matrix: 9,10-diphenylanthracene (9,10-DPA). The use of 9,10-DPA as matrix for MALDI analysis has been tested using several model compounds. It appears to promote ionization through electron transfer in a highly efficient manner as compared to other potential matrices. Thermodynamic aspects of the observed electron transfers in secondary-ionization reactions were also considered, as was the possibility for kinetically controlled/endothermic, electron-transfer reactions in the MALDI plume.
RESUMO
When grown in green light, Fremyella diplosiphon strain UTEX 481 produces the red-colored protein phycoerythrin (PE) to maximize photosynthetic light harvesting. PE is composed of two subunits, CpeA and CpeB, which carry two and three phycoerythrobilin (PEB) chromophores, respectively, that are attached to specific Cys residues via thioether linkages. Specific bilin lyases are hypothesized to catalyze each PEB ligation. Using a heterologous, coexpression system in Escherichia coli, the PEB ligation activities of putative lyase subunits CpeY, CpeZ, and CpeS were tested on the CpeA and CpeB subunits from F. diplosiphon. Purified His(6)-tagged CpeA, obtained by coexpressing cpeA, cpeYZ, and the genes for PEB synthesis, had absorbance and fluorescence emission maxima at 566 and 574 nm, respectively. CpeY alone, but not CpeZ, could ligate PEB to CpeA, but the yield of CpeA-PEB was lower than achieved with CpeY and CpeZ together. Studies with site-specific variants of CpeA(C82S and C139S), together with mass spectrometric analysis of trypsin-digested CpeA-PEB, revealed that CpeY/CpeZ attached PEB at Cys(82) of CpeA. The CpeS bilin lyase ligated PEB at both Cys(82) and Cys(139) of CpeA but very inefficiently; the yield of PEB ligated at Cys(82) was much lower than observed with CpeY or CpeY/CpeZ. However, CpeS efficiently attached PEB to Cys(80) of CpeB but neither CpeY, CpeZ, nor CpeY/CpeZ could ligate PEB to CpeB.