Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Virus Evol ; 9(1): vead003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816049

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and is advantageous to research because, unlike many herpesviruses, it can be studied in the laboratory by infection of the natural host (common and koi carp). Previous studies have reported a negative correlation among CyHV-3 strains between viral growth in vitro (in cell culture) and virulence in vivo (in fish). This suggests the existence of genovariants conferring enhanced fitness in vitro but reduced fitness in vivo and vice versa. Here, we identified the syncytial plaque formation in vitro as a common trait of CyHV-3 strains adapted to cell culture. A comparison of the sequences of virion transmembrane protein genes in CyHV-3 strains, and the use of various recombinant viruses, demonstrated that this trait is linked to a single-nucleotide polymorphism (SNP) in the open reading frame (ORF) 131 coding sequence (C225791T mutation) that results in codon 183 encoding either an alanine (183A) or a threonine (183T) residue. In experiments involving infections with recombinant viruses differing only by this SNP, the 183A genovariant associated with syncytial plaque formation was the more fit in vitro but the less fit in vivo. In experiments involving coinfection with both viruses, the more fit genovariant contributed to the purifying selection of the less fit genovariant by outcompeting it. In addition, this process appeared to be accelerated by viral stimulation of interference at a cellular level and stimulation of resistance to superinfection at a host level. Collectively, this study illustrates how the fundamental biological properties of some viruses and their hosts may have a profound impact on the degree of diversity that arises within viral populations.

2.
Front Mol Neurosci ; 16: 1324922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283700

RESUMO

Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.

3.
J Mol Diagn ; 23(10): 1249-1258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358676

RESUMO

Nasopharyngeal swabs are considered the preferential collection method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. Less invasive and simpler alternative sampling procedures, such as saliva collection, are desirable. We compared saliva specimens and nasopharyngeal (NP) swabs with respect to sensitivity in detecting SARS-CoV-2. A nasopharyngeal and two saliva specimens (collected by spitting or oral swabbing) were obtained from >2500 individuals. All samples were tested by RT-qPCR, detecting RNA of SARS-CoV-2. The test sensitivity was compared on the two saliva collections with the nasopharyngeal specimen for all subjects and stratified by symptom status and viral load. Of the 2850 patients for whom all three samples were available, 105 were positive on NP swab, whereas 32 and 23 were also positive on saliva spitting and saliva swabbing samples, respectively. The sensitivity of the RT-qPCR to detect SARS-CoV-2 among NP-positive patients was 30.5% (95% CI, 1.9%-40.2%) for saliva spitting and 21.9% (95% CI, 14.4%-31.0%) for saliva swabbing. However, when focusing on subjects with medium to high viral load, sensitivity on saliva increased substantially: 93.9% (95% CI, 79.8%-99.3%) and 76.9% (95% CI, 56.4%-91.0%) for spitting and swabbing, respectively, regardless of symptomatic status. Our results suggest that saliva cannot readily replace nasopharyngeal sampling for SARS-CoV-2 diagnostics but may enable identification of the most contagious cases with medium to high viral loads.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/virologia , Saliva/virologia , Manejo de Espécimes/métodos , Adulto , COVID-19/etiologia , Portador Sadio/virologia , Humanos , Nasofaringe/virologia , Estudos Prospectivos , Manejo de Espécimes/instrumentação , Carga Viral
4.
Fish Shellfish Immunol ; 93: 531-541, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369858

RESUMO

Aquaculture is one of the world's most important and fastest growing food production sectors, with an average annual growth of 5.8% during the period 2001-2016. Common carp (Cyprinus carpio) is one of the main aquatic species produced for human consumption and is the world's third most produced finfish. Koi carp, on the other hand, are grown as a popular ornamental fish. In the late 1990s, both of these sectors were threatened by the emergence of a deadly disease caused by cyprinid herpesvirus 3 (CyHV-3; initially called koi herpesvirus or KHV). Since then, several research groups have focused their work on developing methods to fight this disease. Despite increasing knowledge about the pathobiology of this virus, there are currently no efficient and cost-effective therapeutic methods available to fight this disease. Facing the lack of efficient treatments, safe and efficacious prophylactic methods such as the use of vaccines represent the most promising approach to the control of this virus. The common carp production sector is not a heavily industrialized production sector and the fish produced have low individual value. Therefore, development of vaccine methods adapted to mass vaccination are more suitable. Multiple vaccine candidates against CyHV-3 have been developed and studied, including DNA, bacterial vector, inactivated, conventional attenuated and recombinant attenuated vaccines. However, there is currently only one vaccine commercially available in limited regions. The present review aims to summarize and evaluate the knowledge acquired from the study of these vaccines against CyHV-3 and provide discussion on future prospects.


Assuntos
Carpas/imunologia , Doenças dos Peixes/prevenção & controle , Herpesviridae/imunologia , Vacinas contra Herpesvirus/imunologia , Animais , Doenças dos Peixes/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária
6.
Vet Res ; 49(1): 40, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716648

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) is the archetypal fish alloherpesvirus and the etiologic agent of a lethal disease in common and koi carp. To date, the genome sequences of only four CyHV-3 isolates have been published, but no comparisons of the biologic properties of these strains have been reported. We have sequenced the genomes of a further seven strains from various geographical sources, and have compared their growth in vitro and virulence in vivo. The major findings were: (i) the existence of the two genetic lineages previously described as European and Asian was confirmed, but inconsistencies between the geographic origin and genotype of some strains were revealed; (ii) potential inter-lineage recombination was detected in one strain, which also suggested the existence of a third, as yet unidentified lineage; (iii) analysis of genetic disruptions led to the identification of non-essential genes and their potential role in virulence; (iv) comparison of the in vitro and in vivo properties of strains belonging to the two lineages revealed that inter-lineage polymorphisms do not contribute to the differences in viral fitness observed; and (v) a negative correlation was observed among strains between viral growth in vitro and virulence in vivo. This study illustrates the importance of coupling genomic and biologic comparisons of viral strains in order to enhance understanding of viral evolution and pathogenesis.


Assuntos
Carpas , Doenças dos Peixes/virologia , Genoma Viral , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Herpesviridae/patogenicidade , Animais , Herpesviridae/crescimento & desenvolvimento , Infecções por Herpesviridae/virologia , Virulência , Sequenciamento Completo do Genoma/veterinária
8.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794046

RESUMO

Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs.IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the nonessential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins.


Assuntos
Infecções por Herpesviridae/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteômica/métodos , Proteínas Virais/metabolismo , Vírion/metabolismo , Replicação Viral , Animais , Peixes/metabolismo , Peixes/virologia , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Infecções por Herpesviridae/virologia , Espectrometria de Massas , Proteoma/metabolismo
9.
Antiviral Res ; 145: 60-69, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28690142

RESUMO

The genus Cyprinivirus consists of a growing list of phylogenetically related viruses, some of which cause severe economic losses to the aquaculture industry. The archetypal member, cyprinid herpesvirus 3 (CyHV-3) causes mass mortalities worldwide in koi and common carp. A CyHV-3 mutant was described previously that is attenuated in vivo by a deletion affecting two genes (ORF56 and ORF57). The relative contributions of ORF56 and ORF57 to the safety and efficacy profile of this vaccine candidate have now been assessed by analysing viruses individually deleted for ORF56 or ORF57. Inoculation of these viruses into carp demonstrated that the absence of ORF56 did not affect virulence, whereas the absence of ORF57 led to an attenuation comparable to, though slightly less than, that of the doubly deleted virus. To demonstrate further the role of ORF57 as a key virulence factor, a mutant retaining the ORF57 region but unable to express the ORF57 protein was produced by inserting multiple in-frame stop codons into the coding region. Analysis of this virus in vivo revealed a safety and efficacy profile comparable to that of the doubly deleted virus. These findings show that ORF57 encodes an essential CyHV-3 virulence factor. They also indicate that ORF57 orthologues in other cypriniviruses may offer promising targets for the rational design of attenuated recombinant vaccines.


Assuntos
Carpas/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Herpesviridae/patogenicidade , Fatores de Virulência/genética , Animais , Doenças dos Peixes/virologia , Infecções por Herpesviridae/virologia , Vacinas contra Herpesvirus/genética , Vacinas contra Herpesvirus/imunologia , Fases de Leitura Aberta , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Virulência/genética , Replicação Viral
10.
Cell Host Microbe ; 21(2): 244-253, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28182952

RESUMO

Both endotherms and ectotherms (e.g., fish) increase their body temperature to limit pathogen infection. Ectotherms do so by moving to warmer places, hence the term "behavioral fever." We studied the manifestation of behavioral fever in the common carp infected by cyprinid herpesvirus 3, a native carp pathogen. Carp maintained at 24°C died from the infection, whereas those housed in multi-chamber tanks encompassing a 24°C-32°C gradient migrated transiently to the warmest compartment and survived as a consequence. Behavioral fever manifested only at advanced stages of infection. Consistent with this, expression of CyHV-3 ORF12, encoding a soluble decoy receptor for TNF-α, delayed the manifestation of behavioral fever and promoted CyHV-3 replication in the context of a temperature gradient. Injection of anti-TNF-α neutralizing antibodies suppressed behavioral fever, and decreased fish survival in response to infection. This study provides a unique example of how viruses have evolved to alter host behavior to increase fitness.


Assuntos
Regulação da Temperatura Corporal , Carpas/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/fisiologia , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Virais/metabolismo , Animais , Deleção de Genes , Regulação Viral da Expressão Gênica , Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Receptores do Fator de Necrose Tumoral/genética , Temperatura , Proteínas Virais/genética , Replicação Viral
11.
J Biol Chem ; 290(52): 30713-25, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26559969

RESUMO

In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.


Assuntos
DNA Forma Z/metabolismo , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Doenças dos Peixes/virologia , Vírus de RNA/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carpas , Sequência Conservada , DNA Forma Z/química , DNA Forma Z/genética , Proteína Quinase Ativada por DNA/genética , Interferons/genética , Interferons/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Poxviridae/química , Poxviridae/enzimologia , Poxviridae/genética , Ligação Proteica , Estrutura Terciária de Proteína , Vírus de RNA/química , Vírus de RNA/genética , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas Virais/genética
12.
Adv Virus Res ; 93: 161-256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111587

RESUMO

The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.


Assuntos
Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Animais , Carpas , Herpesviridae/classificação , Herpesviridae/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Dados de Sequência Molecular , Filogenia
13.
PLoS Pathog ; 11(2): e1004690, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25700279

RESUMO

Cyprinid herpesvirus 3 (CyHV 3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV 3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV 3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.


Assuntos
Doenças dos Peixes/imunologia , Infecções por Herpesviridae/veterinária , Herpesviridae/imunologia , Vacinas contra Herpesvirus/imunologia , Vacinas Sintéticas/imunologia , Animais , Carpas , Doenças dos Peixes/virologia , Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Vacinas contra Herpesvirus/efeitos adversos , Medições Luminescentes , Fases de Leitura Aberta/genética , Proteínas Repressoras/genética , Transativadores/genética , Vacinação/métodos , Vacinas Sintéticas/efeitos adversos
14.
Vet Res ; 45: 100, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25281322

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp (Cyprinus carpio). The present study investigated the ability of CyHV-3 to infect common carp during the early stages of its development (from embryos to fingerlings) after inoculation by immersion in water containing the virus. Fish were inoculated at different times after hatching with a pathogenic recombinant CyHV-3 strain expressing luciferase. The sensitivity and permissivity of carp to CyHV-3 were investigated using in vivo bioluminescence imaging. The susceptibility of carp to CyHV-3 disease was investigated by measuring the survival rate. Carp were sensitive and permissive to CyHV-3 infection and susceptible to CyHV-3 disease at all stages of development, but the sensitivity of the two early developmental stages (embryo and larval stages) was limited compared to later stages. The lower sensitivity observed for the early developmental stages was due to stronger inhibition of viral entry into the host by epidermal mucus. In addition, independent of the developmental stage at which inoculation was performed, the localization of light emission suggested that the skin is the portal of CyHV-3 entry. Taken together, the results of the present study demonstrate that carp are sensitive and permissive to CyHV-3 at all stages of development and confirm that the skin is the major portal of entry after inoculation by immersion in infectious water. The results also stress the role of epidermal mucus as an innate immune barrier against pathogens even and especially at the early stages of development.


Assuntos
Carpas/imunologia , Carpas/virologia , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Epiderme/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Animais , Carpas/crescimento & desenvolvimento , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Epiderme/virologia , Doenças dos Peixes/virologia , Muco/imunologia , Muco/virologia
15.
Vet Res ; 44: 85, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24073814

RESUMO

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae is the causative agent of a lethal, highly contagious and notifiable disease in common and koi carp. The economic importance of common and koi carp industries together with the rapid spread of CyHV-3 worldwide, explain why this virus became soon after its isolation in the 1990s a subject of applied research. In addition to its economic importance, an increasing number of fundamental studies demonstrated that CyHV-3 is an original and interesting subject for fundamental research. In this review, we summarized recent advances in CyHV-3 research with a special interest for studies related to host-virus interactions.


Assuntos
Carpas , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Doenças dos Peixes/virologia , Animais , Aquicultura , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/transmissão , Infecções por Vírus de DNA/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/transmissão
16.
Vet Res ; 44: 53, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23865540

RESUMO

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae, is the causative agent of a lethal disease in common and koi carp. CyHV-3 ORF134 encodes an interleukin-10 (IL-10) homologue. The present study was devoted to this ORF. Transcriptomic analyses revealed that ORF134 is expressed as a spliced gene belonging to the early-late class. Proteomic analyses of CyHV-3 infected cell supernatant demonstrated that the ORF134 expression product is one of the most abundant proteins of the CyHV-3 secretome. To investigate the role of ORF134 in viral replication in vitro and in virulence in vivo, a deleted strain and a derived revertant strain were produced using BAC cloning technologies. The recombinant ORF134 deleted strain replicated in vitro comparably to the parental and the revertant strains. Infection of fish by immersion in water containing the virus induced comparable CyHV-3 disease for the three virus genotypes tested (wild type, deleted and revertant). Quantification of viral DNA by real time TaqMan PCR (in the gills and the kidney) and analysis of carp cytokine expression (in the spleen) by RT-qPCR at different times post-infection did not revealed any significant difference between the groups of fish infected with the three virus genotypes. Similarly, histological examination of the gills and the kidney of infected fish revealed no significant differences between fish infected with ORF134 deleted virus versus fish infected with the control parental or revertant strains. All together, the results of the present study demonstrate that the IL-10 homologue encoded by CyHV-3 is essential neither for viral replication in vitro nor for virulence in common carp.


Assuntos
Carpas , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Vírus de DNA/patogenicidade , Doenças dos Peixes/virologia , Interleucina-10/genética , Animais , Citocinas/genética , Citocinas/metabolismo , Infecções por Vírus de DNA/virologia , DNA Viral/genética , DNA Viral/metabolismo , Regulação da Expressão Gênica , Brânquias/metabolismo , Interleucina-10/metabolismo , Rim/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Baço/metabolismo , Virulência , Replicação Viral
17.
Vet Res ; 43: 6, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22276598

RESUMO

Cyprinid herpesvirus 3 (CyHV-3), also known as Koi herpesvirus, is the etiological agent of a mortal disease in common and koi carp. Recently, we investigated the entry of CyHV-3 in carp using bioluminescence imaging and a CyHV-3 recombinant strain expressing luciferase (LUC). We demonstrated that the skin is the major portal of entry after inoculation of carp by immersion in water containing CyHV-3. While this model of infection mimics some natural conditions in which infection takes place, other epidemiological conditions could favour entry of virus through the digestive tract. Here, we investigated whether ingestion of infectious materials mediates CyHV-3 entry through the digestive tract. Carp were fed with materials contaminated with the CyHV-3 LUC recombinant (oral contamination) or immersed in water containing the virus (contamination by immersion). Bioluminescence imaging analyses performed at different times post-infection led to the following observations: (i) the pharyngeal periodontal mucosa is the major portal of entry after oral contamination, while the skin is the major portal of entry after contamination by immersion. (ii) Both modes of inoculation led to the spreading of the infection to the various organs tested. However, the timing and the sequence in which some of the organs turned positive were different between the two modes of inoculation. Finally, we compared the disease induced by the two inoculation modes. They led to comparable clinical signs and mortality rate. The results of the present study suggest that, based on epidemiological conditions, CyHV-3 can enter carp either by skin or periodontal pharyngeal mucosal infection.


Assuntos
Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Doenças dos Peixes/virologia , Animais , Infecções por Vírus de DNA/virologia , Medições Luminescentes/veterinária , Mucosa/virologia , Faringe/virologia , Pele/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA