Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Endocrinology ; 163(12)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36281035

RESUMO

Regulation of thyroid cells by thyrotropin (TSH) and epidermal growth factor (EGF) has been known but different effects of these regulators on proliferation and differentiation have been reported. We studied these responses in primary cultures of human thyroid cells to determine whether TSH receptor (TSHR) signaling may involve EGF receptor (EGFR) transactivation. We confirm that EGF stimulates proliferation and de-differentiation whereas TSH causes differentiation in the absence of other growth factors. We show that TSH/TSHR transactivates EGFR and characterize it as follows: (1) TSH-induced upregulation of thyroid-specific genes is inhibited by 2 inhibitors of EGFR kinase activity, AG1478 and erlotinib; (2) the mechanism of transactivation is independent of an extracellular EGFR ligand by showing that 2 antibodies, cetuximab and panitumumab, that completely inhibited binding of EGFR ligands to EGFR had no effect on transactivation, and by demonstrating that no EGF was detected in media conditioned by thyrocytes incubated with TSH; (3) TSH/TSHR transactivation of EGFR is different than EGFR activation by EGF by showing that EGF led to rapid phosphorylation of EGFR whereas transactivation occurred in the absence of receptor phosphorylation; (4) EGF caused downregulation of EGFR whereas transactivation had no effect on EGFR level; (5) EGF and TSH stimulation converged on the protein kinase B (AKT) pathway, because TSH, like EGF, stimulated phosphorylation of AKT that was inhibited by EGFR inhibitors; and (6) TSH-induced upregulation of thyroid genes was inhibited by the AKT inhibitor MK2206. Thus, TSH/TSHR causes EGFR transactivation that is independent of extracellular EGFR ligand and in part mediates TSH regulation of thyroid hormone biosynthetic genes.


Assuntos
Fator de Crescimento Epidérmico , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Ativação Transcricional , Cetuximab/metabolismo , Receptores da Tireotropina/metabolismo , Ligantes , Cloridrato de Erlotinib , Panitumumabe , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fosforilação , Proliferação de Células , Tireotropina/farmacologia , Tireotropina/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 989626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246873

RESUMO

Proximity ligation assay (PLA) is a methodology that permits detection of protein-protein closeness, that is, proteins that are within 40 nanometers of each other, in cells or tissues at endogenous protein levels or after exogenous overexpression. It detects the protein(s) with high sensitivity and specificity because it employs a DNA hybridization step followed by DNA amplification. PLA has been used successfully with many types of proteins. In this methods paper, we will describe the workings of PLA and provide examples of its use to study TSH/IGF-1 receptor crosstalk in Graves' orbital fibroblasts (GOFs) and TSH receptor homodimerization in primary cultures of human thyrocytes.


Assuntos
Receptor IGF Tipo 1 , Receptores da Tireotropina , DNA , Humanos , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Glândula Tireoide/metabolismo , Tireotropina
4.
Artigo em Inglês | MEDLINE | ID: mdl-32508750

RESUMO

A direct action of thyrotropin (TSH, thyroid-stimulating hormone) on bone precursors in humans is controversial. Studies in rodent models have provided conflicting findings. We used cells derived from a moderately differentiated osteosarcoma stably overexpressing human TSH receptors (TSHRs) as a model of osteoblast precursors (U2OS-TSHR cells) to investigate TSHR-mediated effects in bone differentiation in human cells. We review our findings that (1) TSHR couples to several different G proteins to induce upregulation of genes associated with osteoblast activity-interleukin 11 (IL-11), osteopontin (OPN), and alkaline phosphatase (ALPL) and that the kinetics of the induction and the G protein-mediated signaling pathways involved were different for these genes; (2) TSH can stimulate ß-arrestin-mediated signal transduction and that ß-arrestin 1 in part mediates TSH-induced pre-osteoblast differentiation; and (3) TSHR/insulin-like growth factor 1 (IGF1) receptor (IGF1R) synergistically increased OPN secretion by TSH and IGF1 and that this crosstalk was mediated by physical association of these receptors in a signaling complex that uses ß-arrestin 1 as a scaffold. These findings were complemented using a novel ß-arrestin 1-biased agonist of TSHR. We conclude that TSHR can signal via several transduction pathways leading to differentiation of this model system of human pre-osteoblast cells and, therefore, that TSH can directly regulate these bone cells.


Assuntos
Osso e Ossos/citologia , Osteoblastos/citologia , Osteossarcoma/patologia , Receptores da Tireotropina/metabolismo , beta-Arrestina 1/metabolismo , Animais , Osso e Ossos/metabolismo , Diferenciação Celular , Humanos , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Transdução de Sinais
5.
Artigo em Inglês | MEDLINE | ID: mdl-32425890

RESUMO

Thyrotropin hormone (TSH) was reported to exhibit biphasic regulation of cAMP production in human thyroid slices; specifically, upregulation at low TSH doses transitioning to inhibition at high doses. We observed this phenomenon in HEK293 cells overexpressing TSH receptors (TSHRs) but in only 25% of human thyrocytes (hThyros) in vitro. Because TSHR expression in hThyros in vitro was low, we tested the hypothesis that high, in situ levels of TSHRs were needed for biphasic cAMP regulation. We increased expression of TSHRs by infecting hThyros with adenoviruses expressing human TSHR (AdhTSHR), measured TSH-stimulated cAMP production and TSHR homodimerization. TSHR mRNA levels in hThyros in vitro were 100-fold lower than in human thyroid tissue. AdhTSHR infection increased TSHR mRNA expression to levels found in thyroid tissue and flow cytometry showed that cell-surface TSHRs increased more than 15-fold. Most uninfected hThyro preparations exhibited monotonic cAMP production. In contrast, most hThyro preparations infected with AdhTSHR expressing TSHR at in vivo levels exhibited biphasic TSH dose responses. Treatment of AdhTSHR-infected hThyros with pertussis toxin resulted in monotonic dose response curves demonstrating that lower levels of cAMP production at high TSH doses were mediated by Gi/Go proteins. Proximity ligation assays confirmed that AdhTSHR infection markedly increased the number of TSHR homodimers. We conclude that in situ levels of TSHRs as homodimers are needed for hThyros to exhibit biphasic TSH regulation of cAMP production.


Assuntos
AMP Cíclico/metabolismo , Dimerização , Receptores da Tireotropina/química , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Receptores da Tireotropina/genética , Transdução de Sinais , Células Epiteliais da Tireoide/citologia , Glândula Tireoide/citologia
6.
Endocrinology ; 160(6): 1468-1479, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127272

RESUMO

Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-ß-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted in biphasic dose-response stimulation of HA secretion. The high-potency phase was IGF1R dependent, and the low-potency phase was partly IGF1R independent. KSAb1 produced a monophasic dose-response stimulation of HA secretion, whose potency was lowered >20-fold after IGF1R knockdown. ARRB1 knockdown abolished M22's high-potency phase and lowered KSAb1's potency and efficacy. ARRB1 knockdown inhibited GO-Ig stimulation of HA secretion and of ERK phosphorylation. Last, ARRB1 was shown to be necessary for TSHR/IGF1R proximity. In contrast, ARRB2 knockdowns did not show these effects. Thus, TSHR must neighbor IGF1R for crosstalk in GO fibroblasts to occur, and this depends on ARRB1 acting as a scaffold. Similar scaffolding of TSHR and IGF1R by ARRB1 was found in human osteoblast-like cells and human thyrocytes. These findings support a model of TSHR/IGF1R crosstalk that may be a general mechanism for G-protein-coupled receptor/receptor tyrosine kinase crosstalk dependent on ARRB1.


Assuntos
Receptor IGF Tipo 1/metabolismo , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , beta-Arrestina 1/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Oftalmopatia de Graves/metabolismo , Humanos , Camundongos , Fosforilação , Receptor IGF Tipo 1/genética , Receptores da Tireotropina/genética , Transdução de Sinais/fisiologia , beta-Arrestina 1/genética
7.
Thyroid ; 28(5): 650-655, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29631510

RESUMO

BACKGROUND: Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. METHODS: Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. RESULTS: In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. CONCLUSIONS: Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.


Assuntos
Oftalmopatia de Graves/metabolismo , Imunoglobulinas/metabolismo , Receptor IGF Tipo 1/metabolismo , Linhagem Celular , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Tireotropina/metabolismo
8.
J Pharmacol Exp Ther ; 364(1): 38-45, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089368

RESUMO

Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a ß-arrestin 1 (ß-Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of ß-Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated ß-Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of ß-Arr 1 to the TSHR, but did not activate Gs-mediated signaling pathways, i.e., cAMP production. D3-ßArr (NCGC00379308) was selected. In DiscoverX1 cells, D3-ßArr stimulated ß-Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating ß-Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3-ßArr alone had only a weak effect to upregulate these bone markers, but D3-ßArr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3-ßArr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3-ßArr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced ß-Arr 1 signaling in osteoblast differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Osteoblastos/efeitos dos fármacos , Receptores da Tireotropina/agonistas , Tireotropina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CHO , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Ensaios de Triagem em Larga Escala/métodos , Humanos , Osteoblastos/fisiologia , Receptores da Tireotropina/fisiologia , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo , Tireotropina/análogos & derivados
9.
Endocrinology ; 157(5): 2173-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26950201

RESUMO

It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways.


Assuntos
Interleucina-11/metabolismo , Osteoblastos/metabolismo , Receptores da Tireotropina/metabolismo , Transdução de Sinais/fisiologia , Tireotropina/farmacologia , Regulação para Cima/fisiologia , Linhagem Celular , Colforsina/farmacologia , Humanos , Isoquinolinas/farmacologia , Osteoblastos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos
10.
FASEB J ; 28(8): 3446-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24723693

RESUMO

Thyrotropin (TSH) activation of the TSH receptor (TSHR), a 7-transmembrane-spanning receptor (7TMR), may have osteoprotective properties by direct effects on bone. TSHR activation by TSH phosphorylates protein kinases AKT1, p38α, and ERK1/2 in some cells. We found TSH-induced phosphorylation of these kinases in 2 cell lines engineered to express TSHRs, human embryonic kidney HEK-TSHR cells and human osteoblastic U2OS-TSHR cells. In U2OS-TSHR cells, TSH up-regulated pAKT1 (7.1±0.5-fold), p38α (2.9±0.4-fold), and pERK1/2 (3.1±0.2-fold), whereas small molecule TSHR agonist C2 had no or little effect on pAKT1 (1.8±0.08-fold), p38α (1.2±0.09-fold), and pERK1/2 (1.6±0.19-fold). Furthermore, TSH increased expression of osteoblast marker genes ALPL (8.2±4.6-fold), RANKL (21±5.9-fold), and osteopontin (OPN; 17±5.3-fold), whereas C2 had little effect (ALPL, 1.7±0.5-fold; RANKL, 1.3±0.6-fold; and OPN, 2.2±0.7-fold). ß-Arrestin-1 and -2 can mediate activatory signals by 7TMRs. TSH stimulated translocation of ß-arrestin-1 and -2 to TSHR, whereas C2 failed to translocate either ß-arrestin. Down-regulation of ß-arrestin-1 by siRNA inhibited TSH-stimulated phosphorylation of ERK1/2, p38α, and AKT1, whereas down-regulation of ß-arrestin-2 increased phosphorylation of AKT1 in both cell types and of ERK1/2 in HEK-TSHR cells. Knockdown of ß-arrestin-1 inhibited TSH-stimulated up-regulation of mRNAs for OPN by 87 ± 1.7% and RANKL by 73 ± 2.4%, and OPN secretion by 74 ± 10%. We conclude that TSH enhances osteoblast differentiation in U2OS cells that is, in part, caused by activatory signals mediated by ß-arrestin-1.


Assuntos
Arrestinas/fisiologia , Osteoblastos/efeitos dos fármacos , Tireotropina/fisiologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Neoplasias/fisiologia , Osteoblastos/citologia , Osteopontina/metabolismo , Osteossarcoma/patologia , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptores da Tireotropina/fisiologia , Proteínas Recombinantes de Fusão , Transdução de Sinais/fisiologia , Tireotropina/farmacologia , beta-Arrestina 1 , beta-Arrestina 2 , beta-Arrestinas
11.
FASEB J ; 26(8): 3473-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593547

RESUMO

G-protein-coupled receptors with dissociable agonists for thyrotropin, parathyroid hormone, and sphingosine-1-phosphate were found to signal persistently hours after agonist withdrawal. Here we show that mouse thyrotropin-releasing hormone (TRH) receptors, subtypes 2 and 1(TRH-R2 and TRH-R1), can signal persistently in HEK-EM293 cells under appropriate conditions, but TRH-R2 exhibits higher persistent signaling activity. Both receptors couple primarily to Gα(q/11). To gain insight into the mechanism of persistent signaling, we compared proximal steps of inositolmonophosphate (IP1) signaling by TRH-Rs. Persistent signaling was not caused by slower dissociation of TRH from TRH-R2 (t(1/2)=77 ± 8.1 min) compared with TRH-R1 (t(1/2)=82 ± 12 min) and was independent of internalization, as inhibition of internalization did not affect persistent signaling (115% of control), but required continuously activated receptors, as an inverse agonist decreased persistent signaling by 60%. Gα(q/11) knockdown decreased persistent signaling by TRH-R2 by 82%, and overexpression of Gα(q/11) induced persistent signaling in cells expressing TRH-R1. Lastly, persistent signaling was induced in cells expressing high levels of TRH-R1. We suggest that persistent signaling by TRHRs is exhibited when sufficient levels of agonist/receptor/G-protein complexes are established and maintained and that TRH-R2 forms and maintains these complexes more efficiently than TRH-R1.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Receptores do Hormônio Liberador da Tireotropina/fisiologia , Transdução de Sinais/fisiologia , Animais , Fosfatos de Inositol/biossíntese , Camundongos , Receptores Acoplados a Proteínas G , Receptores do Hormônio Liberador da Tireotropina/agonistas , Receptores do Hormônio Liberador da Tireotropina/genética
12.
Mol Pharmacol ; 80(2): 240-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525174

RESUMO

The thyrotropin [thyroid-stimulating hormone (TSH)] receptor (TSHR) is known to acutely and persistently stimulate cAMP signaling and at higher TSH concentrations to acutely stimulate phosphoinositide signaling. We measured persistent signaling by stimulating TSHR-expressing human embryonic kidney-EM293 cells with TSH and measuring cAMP or inositol monophosphate (IP1) production, a measure of phosphoinositide signaling, 60 min or longer after TSH removal. In contrast to persistent cAMP production, persistent IP1 production increased progressively when TSH exposure was increased from 1 to 30 min, whereas the rates of decay of persistent signaling were similar. A small-molecule agonist and a thyroid-stimulating antibody also caused persistent IP1 and cAMP signaling. A small-molecule inverse agonist and a neutral antagonist inhibited TSH-stimulated persistent IP1 production, whereas the inverse agonist but not the neutral antagonist inhibited persistent cAMP production. As with persistent cAMP production, persistent IP1 production was not affected when TSHR internalization was inhibited or enhanced. Moreover, Alexa546-TSH-activated TSHR internalization was not accompanied by Gα(q) coupling protein internalization. Thus, transient exposure to high concentrations of TSH causes persistent phosphoinositide and cAMP signaling that is not dependent on internalization. To our knowledge, this is the first demonstration of persistent activation by any G protein-coupled receptor (GPCR) via the Gα(q) pathway and of two G protein-mediated pathways by any GPCR.


Assuntos
Inositol 1,4,5-Trifosfato/fisiologia , Receptores da Tireotropina/fisiologia , Transdução de Sinais/fisiologia , Animais , Bovinos , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tireotropina/metabolismo , Tireotropina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA