Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Methods Mol Biol ; 2804: 53-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753139

RESUMO

The µLAS technology enables in-line DNA concentration and separation in a microchannel. Here, we describe its operation to analyze the size profile of cell-free DNA (cfDNA) extracted from blood plasma. Operated on commercial systems for capillary electrophoresis, we provide the size distribution of healthy individuals or patients using an input of 10 µL.


Assuntos
Ácidos Nucleicos Livres , Eletroforese Capilar , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , Ácidos Nucleicos Livres/genética , Humanos , Eletroforese Capilar/métodos
2.
Anal Chem ; 95(24): 9263-9270, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37279458

RESUMO

Cell-free DNA in human blood plasma (cfDNA) is now widely used and studied as a biomarker for several physiological and pathological situations. In addition to genetic and epigenetic alterations that provide information about the presence and the nature of non-constitutive DNA in the body, cfDNA concentration and size distribution may potentially be independent biomarkers suitable for monitoring at-risk patients and therapy efficacy. Here, we describe a simple, in-line, method, which measures cfDNA concentration and size distribution from only a few microliters of plasma without the need to extract and/or concentrate the DNA prior to the analysis. This method is based on a dual hydrodynamic and electrokinetic actuation, adapted for samples containing salts and proteins such as biological fluids. The method provides analytical performances equivalent to those obtained after purification and concentration of cfDNA, with a precision of ∼1% for size features and of 10-20% for the concentrations of the different size fractions. We show that concentration and size distribution of cfDNA analyzed from plasma can differentiate advanced lung cancer patients from healthy controls. This simple and cost-effective method should facilitate further investigations into the potential clinical usefulness of cfDNA size profiling.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , DNA , Biomarcadores Tumorais , Plasma/química
3.
Front Immunol ; 14: 1183949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180126

RESUMO

Background: Many studies have reported the relevance of donor-derived cfDNA (dd-cfDNA) after lung transplantation (LTx) to diagnose and monitor acute rejection (AR) or chronic rejection or infection (INF). However, the analysis of cfDNA fragment size has not been studied. The aim of this study was to determine the clinical relevance of dd-cfDNA and cfDNA size profiles in events (AR and INF) during the first month after LTx. Methods: This prospective, single-center study includes 62 LTx recipients at the Marseille Nord Hospital, France. Total cfDNA quantification was performed by fluorimetry and digital PCR, dd-cfDNA by NGS (AlloSeq cfDNA-CareDX®), and the size profile by BIABooster (Adelis®). A bronchoalveolar lavage and transbronchial biopsies at D30 established the following groups: not-injured and injured graft (AR, INF, or AR+INF). Results: Quantification of total cfDNA was not correlated with the patient's status at D30. The percentage of dd-cfDNA was significantly higher for injured graft patients at D30 (p=0.0004). A threshold of 1.72% of dd-cfDNA correctly classified the not-injured graft patients (negative predictive value of 91.4%). Among recipients with dd-cfDNA >1.72%, the quantification of small sizes (80-120bp) >3.70% identified the INF with high performance (specificity and positive predictive value of 100%). Conclusion: With the aim of considering cfDNA as a polyvalent non-invasive biomarker in transplantation, an algorithm combining the quantification of dd-cfDNA and small sizes of DNA may significantly classify the different types of allograft injuries.


Assuntos
Ácidos Nucleicos Livres , Transplante de Pulmão , Humanos , Ácidos Nucleicos Livres/genética , Estudos Prospectivos , Relevância Clínica , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Transplante de Pulmão/efeitos adversos
4.
Methods Mol Biol ; 2609: 3-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515826

RESUMO

Poly(ADP-ribose) (PAR) is a homopolymer made of two or more adenosine diphosphate ribose (ADP-ribose) units. The polymer is usually conjugated to protein as a posttranslational modification playing key roles in cellular processes, such as DNA repair, RNA metabolism, and biomolecular condensate formation. Emergent data revealed that PAR length is highly regulated and determines the selection of and affinity towards protein binders. Here, we describe several fluorescence-based methods that quantify PAR length distributions. Briefly, we use the bioconjugation technique ELTA (enzymatic labeling of terminal ADP-ribose) to fluorescently label PAR, which can be isolated from in vitro and cellular samples. We describe a novel capillary electrophoresis method to separate and quantify PAR length and compare the profile to gel electrophoresis- and high-performance liquid chromatography-based methods. The capillary electrophoresis method is rapid and automatable, enabling accurate determination of the length profiles from subfemtomole quantities of PAR.


Assuntos
Adenosina Difosfato Ribose , Poli Adenosina Difosfato Ribose , Poli Adenosina Difosfato Ribose/metabolismo , Cromatografia Líquida de Alta Pressão , Adenosina Difosfato Ribose/metabolismo , Reparo do DNA , Eletroforese Capilar
5.
Lab Chip ; 20(1): 175-184, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31796946

RESUMO

In third generation sequencing, the production of quality data requires the selection of molecules longer than ∼20 kbp, but the size selection threshold of most purification technologies is smaller than this target. Here, we describe a technology operated in a capillary with a tunable selection threshold in the range of 3 to 40 kbp controlled by an electric field. We demonstrate that the selection cut-off is sharp, the purification yield is high, and the purification throughput is scalable. We also provide an analytical model that the actuation settings of the filter. The selection of high molecular weight genomic DNA from the melon Cucumis melo L., a diploid organism of ∼0.45 Gbp, is then reported. Linked-read sequencing data show that the N50 phase block size, which scores the correct representation of two chromosomes, is enhanced by a factor of 2 after size selection, establishing the relevance and versatility of our technology.


Assuntos
DNA/química , Cucumis melo/genética , DNA/genética , Peso Molecular , Tamanho da Partícula , Análise de Sequência de DNA
6.
Nucleic Acids Res ; 47(15): 8050-8060, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31505675

RESUMO

Cas9-assisted targeting of DNA fragments in complex genomes is viewed as an essential strategy to obtain high-quality and continuous sequence data. However, the purity of target loci selected by pulsed-field gel electrophoresis (PFGE) has so far been insufficient to assemble the sequence in one contig. Here, we describe the µLAS technology to capture and purify high molecular weight DNA. First, the technology is optimized to perform high sensitivity DNA profiling with a limit of detection of 20 fg/µl for 50 kb fragments and an analytical time of 50 min. Then, µLAS is operated to isolate a 31.5 kb locus cleaved by Cas9 in the genome of the plant Medicago truncatula. Target purification is validated on a Bacterial Artificial Chromosome plasmid, and subsequently carried out in whole genome with µLAS, PFGE or by combining these techniques. PacBio sequencing shows an enrichment factor of the target sequence of 84 with PFGE alone versus 892 by association of PFGE with µLAS. These performances allow us to sequence and assemble one contig of 29 441 bp with 99% sequence identity to the reference sequence.


Assuntos
Sistemas CRISPR-Cas , DNA de Plantas/genética , Genoma de Planta/genética , Medicago truncatula/genética , Análise de Sequência de DNA/métodos , Cromossomos Artificiais Bacterianos , Biologia Computacional/métodos , DNA de Plantas/isolamento & purificação , Eletroforese em Gel de Campo Pulsado/métodos , Reprodutibilidade dos Testes
7.
Anal Bioanal Chem ; 410(7): 1991-2000, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380016

RESUMO

One of the major difficulties that arises when selecting aptamers containing a G-quadruplex is the correct amplification of the ssDNA sequence. Can aptamers containing a G-quadruplex be selected from a degenerate library using non-equilibrium capillary electrophoresis (CE) of equilibrium mixtures (NECEEM) along with high-throughput Illumina sequencing? In this article, we present some mismatches of the G-quadruplex T29 aptamer specific to thrombin, which was PCR amplified and sequenced by Illumina sequencing. Then, we show the proportionality between the number of sequenced molecules of T29 added to the library and the number of sequences obtained in Illumina sequencing, and we find that T29 sequences from this aptamer can be detected in a random library of ssDNA after the sample is fractionated by NECEEM, amplified by PCR, and sequenced. Treatment of the data by the counting of double-stranded DNA T29 sequences containing a maximum of two mismatches reveals a good correlation with the enrichment factor (fE). This factor is the ratio of the number of aptamer sequences found in the collected complex sample divided by the total number of sequencing reads (aptamer and non-aptamer) plus the quantity of T29 molecules (spiked into a DNA library) injected into CE.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese Capilar/métodos , Quadruplex G , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Biblioteca Gênica , Trombina/análise
8.
Electrophoresis ; 38(12): 1624-1631, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28251659

RESUMO

Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive.


Assuntos
DNA de Cadeia Simples/análise , Eletroforese Capilar/métodos , Oligonucleotídeos/análise , Soluções Tampão , Cromatografia Líquida de Alta Pressão , DNA de Cadeia Simples/química , Técnicas Eletroquímicas , Eletroforese em Gel de Poliacrilamida , Fluoresceínas/química , Fluorescência , Espectrometria de Massas
9.
Methods Mol Biol ; 1466: 1-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27473477

RESUMO

Capillary electrophoresis (CE) coupled to fluorescence detection is an invaluable technique for the quantitative analysis of proteins of interest in the field of clinical diagnosis and quality control of novel biotechnology products. The various chemical and instrumental approaches that have been reported to carry out such sensitive analysis are described in this paper. To illustrate the contribution of CE to the analysis of therapeutic proteins, a detailed protocol for impurities profiling of a recombinant antibody sample using CE-LEDIF is given.


Assuntos
Anticorpos/isolamento & purificação , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Fluorescência , Humanos , Proteínas Recombinantes/isolamento & purificação , Coloração e Rotulagem
10.
Lab Chip ; 16(7): 1243-53, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26936389

RESUMO

DNA size separation followed by purification and enrichment constitute essential operations for genetic engineering. These processes are mostly carried out using DNA electrophoresis in gels or in polymer solutions, a well-established yet lengthy technique which has been notably improved using Lab-on-Chip technologies. So far, innovations for DNA separation or enrichment have been mostly undertaken separately, and we present an approach that allows us to perform these two processes simultaneously for DNA fragments spanning 0.2-50 kilo base pairs (kbp) in length. Our technology involves an electric field and a counter hydrodynamic flow in viscoelastic liquids, in which we show the occurrence of transverse forces oriented toward the walls. These forces increase with DNA molecular weight (MW) and hence induce a progressive reduction in DNA migration speed that triggers size separation in microfluidic channels as well as in capillaries. The separation of MW markers in the range 1-50 kbp is achieved in 15 minutes, thus outperforming gel electrophoresis that takes ∼3 hours for this sample. Furthermore, the use of a funnel, where electric and flow fields are modulated spatially, enables us to adjust the transverse forces so as to stall the motion of DNA molecules at a position where they accumulate at factors of up to 1000 per minute. In this configuration, we establish that the operations of DNA enrichment and separation can be carried out simultaneously for the bands of a DNA MW marker between 0.2-1.5 kbp diluted at 0.02 ng µL(-1) in 30 s. Altogether, our technology, which can readily be integrated as an in-line module in Lab-on-Chips, offers unique opportunities for sample preparation and analysis of minute genomic samples.


Assuntos
DNA/isolamento & purificação , Elasticidade , Hidrodinâmica , Dispositivos Lab-On-A-Chip , DNA/química , Peso Molecular , Viscosidade
11.
Anal Chim Acta ; 912: 146-55, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26920784

RESUMO

Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10-5000 nM), Tamra (10-5000 nM) and tryptophan (1-200 µM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence.


Assuntos
Eletroforese Capilar/métodos , Lasers , Luz , Processos Fotoquímicos , Espectrometria de Fluorescência/métodos , Modelos Químicos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
12.
Electrophoresis ; 34(18): 2632-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23857426

RESUMO

A CE technique coupled to LIF detection (488 nm) or LED-induced fluorescence detection (470 nm) has been evaluated to acquire a cheap way to analyze amino acids (AAs) whilst maintaining the best sensitivity. To quantitate AAs in milk of Cucurbitaceae of Sub-Saharan Africa, they were labeled with FITC. We used an optimized separation buffer composed of 30 mM boric acid buffer adjusted to pH 9.3 with NaOH (1 M) containing 12 mM SDS and 5% ethylene glycol v/v; prior to the injections, the derivatized samples are diluted 100 times. The LOQs in the sample are Arg: 1.1 µM, Ala: 3.5 µM, and Glu 8.9 µM. Cucumeropsis mannii (CM) Naudin and Citrullus lanatus (CL) are vegetable sources rich in proteins and AAs of high quality. Our analyses have led to the identification of 11 AAs in CL and CM milks. Phe, Trp, and Ala are predominant in the two types of lyophilized milks, while Asp and Val demonstrate very low contents. Six essential AAs (Phe, Thr, Val, Trp, Ile, and Leu) are present in both types of extracts, but lysine was not detected, indicating that this AA is missing in gourd milk. These results should be useful in efforts to complement or replace very expensive cow milk or the less-appreciated soya milk with milk from available local agroressources.


Assuntos
Aminoácidos/análise , Cucurbitaceae/química , Eletroforese Capilar/métodos , Extratos Vegetais/química , Sementes/química , Substitutos do Leite/química , Sensibilidade e Especificidade , Espectrometria de Fluorescência
13.
Electrophoresis ; 33(12): 1709-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22740458

RESUMO

LEDs present an alternative to lasers in LIF detection with CE, resulting in LED-induced fluorescence (LEDIF). LEDs are much less expensive, consume less energy and are more stable. In addition, LED light sources allow a greater range of wavelengths to better match the maximum wavelength for the fluorescence of the dye. Antibodies were largely studied in SDS capillary gel electrophoresis (SDS-CGE) and LIF detection with different dyes to label the proteins. In this work, our goal is to show that LEDs can advantageously replace lasers. We used 5-carboxytetramethylrhodamine succinimidyl ester (5-TAMRA.SE), 3-(2-furoyl)-quinoline-2 carboxaldehyde (FQ), and naphthalene-2,3-dialdehyde (NDA) to label IgG and we compared the LIF sensitivity with that obtained from LEDIF. We measured that the LOD values of LEDIF are identical to that obtained with the wavelength equivalent laser, and for 5-TAMRA.SE analysis, LOD values are about six times better than when the classical 488 nm laser was used.


Assuntos
Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Corantes Fluorescentes/química , Imunoglobulina G/análise , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência/métodos , Aminas/química , Aminoácidos/química , Fluoresceína-5-Isotiocianato , Furanos/química , Humanos , Imunoglobulina G/química , Lasers , Limite de Detecção , Naftalenos/química , Quinolinas/química , Rodaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA