Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(14): 143601, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891441

RESUMO

Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^{(2)}(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.

2.
Phys Rev Lett ; 121(4): 043601, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095925

RESUMO

We observe the unconventional photon blockade effect in quantum dot cavity QED, which, in contrast to the conventional photon blockade, operates in the weak coupling regime. A single quantum dot transition is simultaneously coupled to two orthogonally polarized optical cavity modes, and by careful tuning of the input and output state of polarization, the unconventional photon blockade effect is observed. We find a minimum second-order correlation g^{(2)}(0)≈0.37, which corresponds to g^{(2)}(0)≈0.005 when corrected for detector jitter, and observe the expected polarization dependency and photon bunching and antibunching; close by in parameter space, which indicates the abrupt change from phase to amplitude squeezing.

3.
Opt Lett ; 43(17): 4280-4283, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160707

RESUMO

We present an oxide aperture microcavity with embedded quantum dots which utilizes a three-contact design to independently tune the quantum dot wavelength and birefringence of the cavity modes. A polarization splitting tuning of ∼5 GHz is observed. For a typical microcavity polarization splitting, the method can be used to achieve perfect polarization degeneracy that is required for many polarization-based implementations of photonic quantum gates. The embedded quantum dot wavelength can be tuned into resonance with the cavity, independent of the polarization tuning.

4.
Opt Express ; 25(11): 12935-12943, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786645

RESUMO

We demonstrate a simple method to measure optomechanically induced transparency (OMIT) in a Fabry-Perot based system using a trampoline resonator. In OMIT, the transmitted intensity of a weak probe beam in the presence of a strong control beam is modified via the optomechanical interaction, leading to an ultra-narrow optical resonance. To retrieve both the magnitude and the phase of the probe beam, a homodyne detection technique is typically used. We have greatly simplified this method by using a single acousto-optical modulator to create a control and two probe beams. The beat signal between the transmitted control and probe beams shows directly the typical OMIT characteristics. This method therefore demonstrates an elegant solution when a homodyne field is needed but experimentally not accessible.

5.
Nat Commun ; 7: 12578, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27573361

RESUMO

Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.

6.
Phys Rev Lett ; 115(9): 095001, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371659

RESUMO

We perform full-magnetohydrodynamics simulations on various initially helical configurations and show that they reconfigure into a state where the magnetic field lines span nested toroidal surfaces. This relaxed configuration is not a Taylor state, as is often assumed for relaxing plasma, but a state where the Lorentz force is balanced by the hydrostatic pressure, which is lowest on the central ring of the nested tori. Furthermore, the structure is characterized by a spatially slowly varying rotational transform, which leads to the formation of a few magnetic islands at rational surfaces. We then obtain analytic expressions that approximate the global structure of the quasistable linked and knotted plasma configurations that emerge, using maps from S^{3} to S^{2} of which the Hopf fibration is a special case. The knotted plasma configurations have a highly localized magnetic energy density and retain their structure on time scales much longer than the Alfvénic time scale.

7.
Opt Express ; 23(6): 8014-20, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837139

RESUMO

For experimental investigations of macroscopic quantum superpositions and the possible role of gravitational effects on the reduction of the corresponding quantum wave function it is beneficial to consider large mass, low frequency optomechanical systems. We report optical side-band cooling from room temperature for a 1.5×10⁻¹° kg (mode mass), low frequency side-band resolved optomechanical system based on a 5 cm long Fabry-Perot cavity. By using high-quality Bragg mirrors for both the stationary and the micromechanical mirror we are able to construct an optomechanical cavity with an optical linewidth of 23 kHz. This, together with a resonator frequency of 315 kHz, makes the system operate firmly in the side-band resolved regime. With the presented optomechanical system parameters cooling close to the ground state is possible. This brings us one step closer to creating and verifying macroscopic quantum superpositions.

8.
Phys Rev Lett ; 102(9): 097403, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392565

RESUMO

We present coherent reflection spectroscopy on a charge and dc Stark tunable quantum dot embedded in a high-quality and externally mode-matched microcavity. The addition of an exciton to a single-electron-charged quantum dot forms a trion that interacts with the microcavity just below the strong-coupling regime of cavity quantum electrodynamics. Such an integrated, monolithic system is a crucial step towards the implementation of scalable hybrid quantum-information schemes that are based on an efficient interaction between a single photon and a confined electron spin.

9.
Phys Rev Lett ; 99(22): 223602, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18233283

RESUMO

We study a Mach-Zehnder interferometer fed by a coherent state in one input port and vacuum in the other. We explore a Bayesian phase estimation strategy to demonstrate that it is possible to achieve the standard quantum limit independently from the true value of the phase shift and specific assumptions on the noise of the interferometer. We have been able to implement the protocol by using parallel operation of two photon-number-resolving detectors and multiphoton coincidence logic electronics at the output ports of a weakly illuminated Mach-Zehnder interferometer. This protocol is unbiased, saturates the Cramer-Rao phase uncertainty bound, and, therefore, is an optimal phase estimation strategy.

10.
Phys Rev Lett ; 96(20): 203601, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16803172

RESUMO

We use a photon-number-resolving detector to monitor the photon-number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical nonlinearities. Following a scheme by Bentley and Boyd [Opt. Express 12, 5735 (2004).10.1364/OPEX.12.005735], we explore this effect to demonstrate interference patterns a factor of 5 smaller than the Rayleigh limit.

11.
Phys Rev Lett ; 96(16): 160404, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16712209

RESUMO

The bunching of two single photons on a beam splitter is a fundamental quantum effect, first observed by Hong, Ou, and Mandel. It is a unique interference effect that relies only on the photons' indistinguishability and not on their relative phase. We generalize this effect by demonstrating the bunching of two Bell states, created in two passes of a nonlinear crystal, each composed of two photons. When the two Bell states are indistinguishable, phase-insensitive destructive interference prevents the outcome of fourfold coincidence between the four spatial-polarization modes. For certain combinations of the two Bell states, we demonstrate the opposite effect of antibunching. We relate this result to the number of distinguishable modes in parametric down-conversion.

12.
Phys Rev Lett ; 96(12): 127404, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16605958

RESUMO

We demonstrate that very few (2-4) quantum dots as a gain medium are sufficient to realize a photonic-crystal laser based on a high-quality nanocavity. Photon correlation measurements show a transition from a thermal to a coherent light state proving that lasing action occurs at ultralow thresholds. Observation of lasing is unexpected since the cavity mode is in general not resonant with the discrete quantum dot states and emission at those frequencies is suppressed. In this situation, the quasicontinuous quantum dot states become crucial since they provide an energy-transfer channel into the lasing mode, effectively leading to a self-tuned resonance for the gain medium.

13.
Phys Rev Lett ; 94(9): 090502, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783951

RESUMO

Multiphoton path entanglement is created without applying postselection, by manipulating the state of stimulated parametric down-conversion. A specific measurement on one of the two output spatial modes leads to the nonlocal bunching of the photons of the other mode, forming the desired multiphoton path entangled state. We present experimental results for the case of a heralded two-photon path entangled state and show how to extend this scheme to higher photon numbers.

14.
Phys Rev Lett ; 93(19): 193901, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600835

RESUMO

A bipartite multiphoton entangled state is created through stimulated parametric down-conversion of strong laser pulses in a nonlinear crystal. It is shown how detectors that do not resolve the photon number can be used to analyze such multiphoton states. Entanglement of up to 12 photons is detected using both the positivity of the partially-transposed density matrix and a newly derived criteria. Furthermore, evidence is provided for entanglement of up to 100 photons. The multiparticle quantum state is such that even in the case of an overall photon collection and detection efficiency as low as a few percent, entanglement remains and can be detected.

15.
Nature ; 412(6850): 887-90, 2001 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-11528472

RESUMO

Entangled photon pairs-discrete light quanta that exhibit non-classical correlations-play a crucial role in quantum information science (for example, in demonstrations of quantum non-locality, quantum teleportation and quantum cryptography). At the macroscopic optical-field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons, through the creation and amplification of the spin-1/2 and spin-1 singlet states consisting of two and four photons, respectively. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.

16.
Nature ; 403(6769): 515-9, 2000 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-10676953

RESUMO

Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

18.
Phys Rev A ; 51(1): 641-645, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9911625
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA