Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 308(9): E744-55, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25714671

RESUMO

Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications.


Assuntos
Diabetes Mellitus/metabolismo , Fígado/metabolismo , Proteoma/metabolismo , Receptor de Insulina/genética , Animais , Diabetes Mellitus/genética , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas/metabolismo , Proteômica
2.
Islets ; 3(5): 250-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21765243

RESUMO

The search for factors either promoting islets proliferation or survival during adult life is a major issue for both type 1 and 2 diabetes mellitus. Among factors with mitogenic activity on pancreatic ß-cells, human placental lactogen (hPL) showed stronger activity when compared to the other lactogen hormones: growth hormone (GH) and prolactin (PRL). The aim of the present work is to elucidate the biological and molecular events of hPL isoform A (hPL-A) activity on human cultured islets. We used pure human pancreatic islets and insulinoma cell lines (ßTC-1 and RIN, murine and rat respectively) stimulated with hPL-A recombinant protein and we compared hPL-A activity with that of hGH. We showed that hPL-A inhibits apoptosis, both in insulinoma and human islets, by the phosphorylation of AKT protein. Indeed, the antiapoptotic role of hPL-A was mediated by PI3K, p38 and it was independent by PKA, Erk1/2. Compared with hGH, hPL-A modulated at different intervals and/or intensity by the phosphorylation of JAKs/STATs and MAPKinases. Moreover, hPL-A induced PDX-1 intracellular expression, improving beta cell activity and ameliorating insulin secretion in response to high glucose stimulation. Our data support the idea that hPL-A is involved in the regulation of beta cells activity. Importantly, we found that hPL-A can preserve and improve the ability of purified human pancreatic islets cultured to secrete insulin in vitro.


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Lactogênio Placentário/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/farmacologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neoplasias Pancreáticas , Lactogênio Placentário/farmacologia , Prolactina/metabolismo , Prolactina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Transl Oncol ; 4(1): 38-46, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21286376

RESUMO

RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA