Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922674

RESUMO

Chemical processes taking place on ice-grain mantles are pivotal to the complex chemistry of interstellar environments. In this study, we conducted a comprehensive analysis of the catalytic effects of an amorphous solid water (ASW) surface on the reaction between ammonia (NH3) and formaldehyde (H2CO) to form aminomethanol (NH2CH2OH) using density functional theory. We identified potential catalytic sites based on the binding energy distribution of NH3 and H2CO reactants, on a set-of-clusters surface model composed of 22 water molecules and found a total of 14 reaction paths. Our results indicate that the catalytic sites can be categorized into four groups, depending on the interactions of the carbonyl oxygen and the amino group with the ice surface in the reactant complex. A detailed analysis of the reaction mechanism using Intrinsic Reaction Coordinate and reaction force analysis, revealed three distinct chemical events for this reaction: formation of the C-N bond, breaking of the N-H bond, and formation of the O-H hydroxyl bond. Depending on the type of catalytic site, these events can occur within a single, concerted, albeit asynchronous, step, or can be isolated in a step-wise mechanism, with the lowest overall transition state energy observed at 1.3 kcal mol-1. A key requirement for the low-energy mechanism is the presence of a pair of dangling OH bonds on the surface, found at 5% of the potential catalytic sites on an ASW porous surface.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 066412, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23368064

RESUMO

The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA