Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gut ; 73(5): 751-769, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331563

RESUMO

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/etiologia , Inflamação/metabolismo , Carboidratos/farmacologia
2.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38189216

RESUMO

Many peptidoglycan-deficient bacteria such as the Mycoplasmatales are known host-associated lineages, lacking the environmental resistance mechanisms and metabolic capabilities necessary for a free-living lifestyle. Several peptidoglycan-deficient and non-sporulating orders of interest are thought to be descended from Gram-positive sporulating Bacilli through reductive evolution. Here we annotate 2650 genomes belonging to the class Bacilli, according to the Genome Taxonomy Database, to predict the peptidoglycan and sporulation phenotypes of three novel orders, RFN20, RF39 and ML615J-28, known only through environmental sequence surveys. These lineages are interspersed between peptidoglycan-deficient non-sporulating orders including the Mycoplasmatales and Acholeplasmatales, and more typical Gram-positive orders such as the Erysipelotrichales and Staphylococcales. We use the extant genotypes to perform ancestral state reconstructions. The novel orders are predicted to have small genomes with minimal metabolic capabilities and to comprise a mix of peptidoglycan-deficient and/or non-sporulating species. In contrast to expectations based on cultured representatives, the order Erysipelotrichales lacks many of the genes involved in peptidoglycan and endospore formation. The reconstructed evolutionary history of these traits suggests multiple independent whole-genome reductions and loss of phenotype via intermediate transition states that continue into the present. We suggest that the evolutionary history of the reduced-genome lineages within the class Bacilli is one driven by multiple independent transitions to host-associated lifestyles, with the degree of reduction in environmental resistance and metabolic capabilities correlated with degree of host association.


Assuntos
Mycoplasmatales , Peptidoglicano , Bactérias Gram-Positivas , Firmicutes , Genótipo
3.
Blood ; 138(8): 722-737, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436524

RESUMO

Immunopathology and intestinal stem cell (ISC) loss in the gastrointestinal (GI) tract is the prima facie manifestation of graft-versus-host disease (GVHD) and is responsible for significant mortality after allogeneic bone marrow transplantation (BMT). Approaches to prevent GVHD to date focus on immune suppression. Here, we identify interferon-λ (IFN-λ; interleukin-28 [IL-28]/IL-29) as a key protector of GI GVHD immunopathology, notably within the ISC compartment. Ifnlr1-/- mice displayed exaggerated GI GVHD and mortality independent of Paneth cells and alterations to the microbiome. Ifnlr1-/- intestinal organoid growth was significantly impaired, and targeted Ifnlr1 deficiency exhibited effects intrinsic to recipient Lgr5+ ISCs and natural killer cells. PEGylated recombinant IL-29 (PEG-rIL-29) treatment of naive mice enhanced Lgr5+ ISC numbers and organoid growth independent of both IL-22 and type I IFN and modulated proliferative and apoptosis gene sets in Lgr5+ ISCs. PEG-rIL-29 treatment improved survival, reduced GVHD severity, and enhanced epithelial proliferation and ISC-derived organoid growth after BMT. The preservation of ISC numbers in response to PEG-rIL-29 after BMT occurred both in the presence and absence of IFN-λ-signaling in recipient natural killer cells. IFN-λ is therefore an attractive and rapidly testable approach to prevent ISC loss and immunopathology during GVHD.


Assuntos
Transplante de Medula Óssea , Citocinas/farmacologia , Gastroenteropatias , Doença Enxerto-Hospedeiro , Interleucinas/farmacocinética , Transdução de Sinais , Animais , Citocinas/imunologia , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/genética , Gastroenteropatias/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Knockout , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transplante Homólogo
4.
ISME Commun ; 1(1): 49, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36747007

RESUMO

The domestication of the laboratory mouse has influenced the composition of its native gut microbiome, which is now known to differ from that of its wild ancestor. However, limited exploration of the rodent gut microbiome beyond the model species Mus musculus has made it difficult to interpret microbiome variation in a broader phylogenetic context. Here, we analyse 120 de novo and 469 public metagenomically-sequenced faecal and caecal samples from 16 rodent hosts representing wild, laboratory and captive lifestyles. Distinct gut bacterial communities were observed between rodent host genera, with broadly distributed species originating from the as-yet-uncultured bacterial genera UBA9475 and UBA2821 in the families Oscillospiraceae and Lachnospiraceae, respectively. In laboratory mice, Helicobacteraceae were generally depleted relative to wild mice and specific Muribaculaceae populations were enriched in different laboratory facilities, suggesting facility-specific outgrowths of this historically dominant rodent gut family. Several bacterial families of clinical interest, including Akkermansiaceae, Streptococcaceae and Enterobacteriaceae, were inferred to have gained over half of their representative species in mice within the laboratory environment, being undetected in most wild rodents and suggesting an association between laboratory domestication and pathobiont emergence.

5.
Nat Commun ; 11(1): 5886, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208745

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD.


Assuntos
Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Aminoácidos/química , Aminoácidos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Pulmão/metabolismo , Masculino , Metabolômica , Microbiota , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo
6.
Gut Microbes ; 11(4): 754-770, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31928131

RESUMO

OBJECTIVE: The gut microbiome plays a key role in the development of acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. Here we investigate the individual contribution of the pre- and post-transplant gut microbiome to acute GVHD using a well-studied mouse model. DESIGN: Wild-type mice were cohoused with IL-17RA-/ - mice, susceptible to hyperacute GVHD, either pre- or post-transplant alone or continuously (i.e., pre- and post-transplant). Fecal samples were collected from both WT and IL-17RA-/ - mice pre- and post-cohousing and post-transplant and the microbiome analyzed using metagenomic sequencing. RESULTS: Priming wild-type mice via cohousing pre-transplant only is insufficient to accelerate GVHD, however, accelerated disease is observed in WT mice cohoused post-transplant only. When mice are cohoused continuously, the effect of priming and exacerbation is additive, resulting in a greater acceleration of disease in WT mice beyond that seen with cohousing post-transplant only. Metagenomic analysis of the microbiome revealed pre-transplant cohousing is associated with the transfer of specific species within two as-yet-uncultured genera of the bacterial family Muribaculaceae; CAG-485 and CAG-873. Post-transplant, we observed GVHD-associated blooms of Enterobacteriaceae members Escherichia coli and Enterobacter hormaechei subsp. steigerwaltii, and hyperacute GVHD gut microbiome distinct from that associated with delayed-onset disease (>10 days post-transplant). CONCLUSION: These results clarify the importance of the peri-transplant microbiome in the susceptibility to acute GVHD post-transplant and demonstrate the species-specific nature of this association.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Animais , Bacteroidetes/crescimento & desenvolvimento , Suscetibilidade a Doenças , Disbiose , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/patogenicidade , Fezes/microbiologia , Doença Enxerto-Hospedeiro/microbiologia , Abrigo para Animais , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Virulência/metabolismo
7.
Lancet Respir Med ; 7(10): 907-920, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30975495

RESUMO

The composition of the lung microbiome is increasingly well characterised, with changes in microbial diversity or abundance observed in association with several chronic respiratory diseases such as asthma, cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. However, the precise effects of the microbiome on pulmonary health and the functional mechanisms by which it regulates host immunity are only now beginning to be elucidated. Bacteria, viruses, and fungi from both the upper and lower respiratory tract produce structural ligands and metabolites that interact with the host and alter the development and progression of chronic respiratory diseases. Here, we review recent advances in our understanding of the composition of the lung microbiome, including the virome and mycobiome, the mechanisms by which these microbes interact with host immunity, and their functional effects on the pathogenesis, exacerbations, and comorbidities of chronic respiratory diseases. We also describe the present understanding of how respiratory microbiota can influence the efficacy of common therapies for chronic respiratory disease, and the potential of manipulation of the microbiome as a therapeutic strategy. Finally, we highlight some of the limitations in the field and propose how these could be addressed in future research.


Assuntos
Microbiota/fisiologia , Transtornos Respiratórios/microbiologia , Doença Crônica , Humanos , Imunidade/fisiologia , Pulmão/microbiologia , Microbiota/imunologia , Transtornos Respiratórios/imunologia , Sistema Respiratório/microbiologia
8.
Ann Rheum Dis ; 78(4): 494-503, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700427

RESUMO

OBJECTIVES: Certain gut bacterial families, including Bacteroidaceae, Porphyromonadaceae and Prevotellaceae, are increased in people suffering from spondyloarthropathy (SpA), a disease group associated with IL23R signalling variants. To understand the relationship between host interleukin (IL)-23 signalling and gut bacterial dysbiosis in SpA, we inhibited IL-23 in dysbiotic ZAP-70-mutant SKG mice that develop IL-23-dependent SpA-like arthritis, psoriasis-like skin inflammation and Crohn's-like ileitis in response to microbial beta 1,3-glucan (curdlan). METHODS: We treated SKG mice weekly with anti-IL-23 or isotype mAb for 3 weeks, rested them for 3 weeks, then administered curdlan or saline. We collected faecal samples longitudinally, assessed arthritis, spondylitis, psoriasis and ileitis histologically, and analysed the microbiota community profiles using next-generation sequencing. We used multivariate sparse partial least squares discriminant analysis to identify operational taxonomic unit (OTU) signatures best classifying treatment groups and linear regression to develop a predictive model of disease severity. RESULTS: IL-23p19 inhibition in naïve SKG mice decreased Bacteroidaceae, Porphyromonadaceae and Prevotellaceae. Abundance of Clostridiaceae and Lachnospiraceae families concomitantly increased, and curdlan-mediated SpA development decreased. Abundance of Enterobacteriaceae and Porphyromonadaceae family and reduction in Lachnospiraceae Dorea genus OTUs early in disease course were associated with disease severity in affected tissues. CONCLUSIONS: Dysbiosis in SKG mice reflects human SpA and is IL-23p19 dependent. In genetically susceptible hosts, IL-23p19 favours outgrowth of SpA-associated pathobionts and reduces support for homeostatic-inducing microbiota. The relative abundance of specific pathobionts is associated with disease severity.


Assuntos
Bactérias/crescimento & desenvolvimento , Disbiose/microbiologia , Microbioma Gastrointestinal/imunologia , Subunidade p19 da Interleucina-23/imunologia , Espondilartrite/microbiologia , Animais , Disbiose/imunologia , Fezes/microbiologia , Feminino , Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Subunidade p19 da Interleucina-23/antagonistas & inibidores , Camundongos Mutantes , Índice de Gravidade de Doença , Espondilartrite/induzido quimicamente , Espondilartrite/imunologia , beta-Glucanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA