Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(4): 1030-1036, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34788793

RESUMO

MOTIVATION: The MS2-MCP (MS2 coat protein) live imaging system allows for visualization of transcription dynamics through the introduction of hairpin stem-loop sequences into a gene. A fluorescent signal at the site of nascent transcription in the nucleus quantifies mRNA production. Computational modelling can be used to infer the promoter states along with the kinetic parameters governing transcription, such as promoter switching frequency and polymerase loading rate. However, modelling of the fluorescent trace presents a challenge due its persistence; the observed fluorescence at a given time point depends on both current and previous promoter states. A compound state Hidden Markov Model (cpHMM) was recently introduced to allow inference of promoter activity from MS2-MCP data. However, the computational time for inference scales exponentially with gene length and the cpHMM is therefore not currently practical for application to many eukaryotic genes. RESULTS: We present a scalable implementation of the cpHMM for fast inference of promoter activity and transcriptional kinetic parameters. This new method can model genes of arbitrary length through the use of a time-adaptive truncated compound state space. The truncated state space provides a good approximation to the full state space by retaining the most likely set of states at each time during the forward pass of the algorithm. Testing on MS2-MCP fluorescent data collected from early Drosophila melanogaster embryos indicates that the method provides accurate inference of kinetic parameters within a computationally feasible timeframe. The inferred promoter traces generated by the model can also be used to infer single-cell transcriptional parameters. AVAILABILITY AND IMPLEMENTATION: Python implementation is available at https://github.com/ManchesterBioinference/burstInfer, along with code to reproduce the examples presented here. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Fatores de Tempo , Simulação por Computador
2.
Dev Cell ; 54(6): 727-741.e7, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32758422

RESUMO

Morphogen gradients specify cell fates during development, with a classic example being the bone morphogenetic protein (BMP) gradient's conserved role in embryonic dorsal-ventral axis patterning. Here, we elucidate how the BMP gradient is interpreted in the Drosophila embryo by combining live imaging with computational modeling to infer transcriptional burst parameters at single-cell resolution. By comparing burst kinetics in cells receiving different levels of BMP signaling, we show that BMP signaling controls burst frequency by regulating the promoter activation rate. We provide evidence that the promoter activation rate is influenced by both enhancer and promoter sequences, whereas Pol II loading rate is primarily modulated by the enhancer. Consistent with BMP-dependent regulation of burst frequency, the numbers of BMP target gene transcripts per cell are graded across their expression domains. We suggest that graded mRNA output is a general feature of morphogen gradient interpretation and discuss how this can impact on cell-fate decisions.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA