Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(10): 4278-4287, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717309

RESUMO

The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H2O)21 system, we showcase this parameter-free quantum approach's ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.

2.
Prostate ; 84(11): 1033-1046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38708958

RESUMO

BACKGROUND: Preclinical models recapitulating the metastatic phenotypes are essential for developing the next-generation therapies for metastatic prostate cancer (mPC). We aimed to establish a cohort of clinically relevant mPC models, particularly androgen receptor positive (AR+) bone metastasis models, from LuCaP patient-derived xenografts (PDX) that reflect the heterogeneity and complexity of mPC. METHODS: PDX tumors were dissociated into single cells, modified to express luciferase, and were inoculated into NSG mice via intracardiac injection. The progression of metastases was monitored by bioluminescent imaging. Histological phenotypes of metastases were characterized by immunohistochemistry and immunofluorescence staining. Castration responses were further investigated in two AR-positive models. RESULTS: Our PDX-derived metastasis (PDM) model collection comprises three AR+ adenocarcinomas (ARPC) and one AR- neuroendocrine carcinoma (NEPC). All ARPC models developed bone metastases with either an osteoblastic, osteolytic, or mixed phenotype, while the NEPC model mainly developed brain metastasis. Different mechanisms of castration resistance were observed in two AR+ PDM models with distinct genotypes, such as combined loss of TP53 and RB1 in one model and expression of AR splice variant 7 (AR-V7) expression in another model. Intriguingly, the castration-resistant tumors displayed inter- and intra-tumor as well as organ-specific heterogeneity in lineage specification. CONCLUSION: Genetically diverse PDM models provide a clinically relevant system for biomarker identification and personalized medicine in metastatic castration-resistant prostate cancer.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Receptores Androgênicos , Animais , Humanos , Masculino , Camundongos , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/genética , Modelos Animais de Doenças , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
3.
J Phys Chem A ; 128(16): 3212-3219, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38624168

RESUMO

The singly hydrated hydroxide anion OH-(H2O) is of central importance to a detailed molecular understanding of water; therefore, there is strong motivation to develop a highly accurate potential to describe this anion. While this is a small molecule, it is necessary to have an extensive data set of energies and, if possible, forces to span several important stationary points. Here, we assess two machine-learned potentials, one using the symmetric gradient domain machine learning (sGDML) method and one based on permutationally invariant polynomials (PIPs). These are successors to a PIP potential energy surface (PES) reported in 2004. We describe the details of both fitting methods and then compare the two PESs with respect to precision, properties, and speed of evaluation. While the precision of the potentials is similar, the PIP PES is much faster to evaluate for energies and energies plus gradient than the sGDML one. Diffusion Monte Carlo calculations of the ground vibrational state, using both potentials, produce similar large anharmonic downshift of the zero-point energy compared to the harmonic approximation of the PIP and sGDML potentials. The computational time for these calculations using the sGDML PES is roughly 300 times greater than using the PIP one.

4.
J Phys Chem Lett ; 15(16): 4451-4460, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626460

RESUMO

Machine learning potentials (MLPs) are widely applied as an efficient alternative way to represent potential energy surfaces (PESs) in many chemical simulations. The MLPs are often evaluated with the root-mean-square errors on the test set drawn from the same distribution as the training data. Here, we systematically investigate the relationship between such test errors and the simulation accuracy with MLPs on an example of a full-dimensional, global PES for the glycine amino acid. Our results show that the errors in the test set do not unambiguously reflect the MLP performance in different simulation tasks, such as relative conformer energies, barriers, vibrational levels, and zero-point vibrational energies. We also offer an easily accessible solution for improving the MLP quality in a simulation-oriented manner, yielding the most precise relative conformer energies and barriers. This solution also passed the stringent test by diffusion Monte Carlo simulations.

5.
J Chem Theory Comput ; 20(8): 3008-3018, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593438

RESUMO

Assessments of machine-learning (ML) potentials are an important aspect of the rapid development of this field. We recently reported an assessment of the linear-regression permutationally invariant polynomial (PIP) method for ethanol, using the widely used (revised) rMD17 data set. We demonstrated that the PIP approach outperformed numerous other methods, e.g., ANI, PhysNet, sGDML, and p-KRR, with respect to precision and notably with respect to speed [Houston et al., J. Chem. Phys. 2022, 156, 044120]. Here, we extend this assessment to the 21-atom aspirin molecule, using the rMD17 data set, with a focus on the speed of evaluation. Both energies and forces are used for training, and the precision of several PIPs is examined for both. Normal mode frequencies, the methyl torsional potential, and 1d vibrational energies for an OH stretch are presented. We show that the PIP approach achieves the level of precision obtained from other ML methods, e.g., atom-centered neural network methods, linear regression ACE, and kernel methods, as reported by Kovács et al. in J. Chem. Theory Comput. 2021, 17, 7696-7711. More significantly, we show that the PIP PESs run much faster than all other ML methods, whose timings were evaluated in that paper. We also show that the PIP PES extrapolates well enough to describe several internal motions of aspirin, including an OH stretch.

6.
J Chem Theory Comput ; 20(5): 1821-1828, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382541

RESUMO

The formic acid-ammonia dimer is an important example of a hydrogen-bonded complex in which a double proton transfer can occur. Its microwave spectrum has recently been reported and rotational constants and quadrupole coupling constants were determined. Calculated estimates of the double-well barrier and the internal barriers to rotation were also reported. Here, we report a full-dimensional potential energy surface (PES) for this complex, using two closely related Δ-machine learning methods to bring it to the CCSD(T) level of accuracy. The PES dissociates smoothly and accurately. Using a 2d quantum model the ground vibrational-state tunneling splitting is estimated to be less than 10-4 cm-1. The dipole moment along the intrinsic reaction coordinate is calculated along with a Mullikan charge analysis and supports the mildly ionic character of the minimum and strongly ionic character at the double-well barrier.

7.
J Phys Chem A ; 128(2): 479-487, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38180902

RESUMO

Hamiltonian matrices typically contain many elements that are negligibly small compared to the diagonal elements, even with methods to prune the underlying basis. Because for general potentials the calculation of H-matrix elements is a major part of the computational effort to obtain eigenvalues and eigenfunctions of the Hamiltonian, there is strong motivation to investigate locating these negligible elements without calculating them or at least avoid calculating them. We recently demonstrated an effective means to "learn" negligible elements using machine learning classification (J. Chem. Phys. 2023, 159, 071101). Here we present a simple, new method to avoid calculating them by using a cut-off value for the absolute difference in the quantum numbers for the bra and ket. This method is demonstrated for many of the same case studies as were used in the paper above, namely for realistic H-matrices of H2O, the vinyl radical, C2H3, and glycine, C2H5NO2. The new method is compared to the recently reported machine learning approach. In addition, we point out an important synergy between the two methods.

8.
J Phys Chem A ; 128(5): 902-908, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38271992

RESUMO

We report a full dimensional ab initio potential energy surface for NaCl-H2 based on precise fitting of a large data set of CCSD(T)/aug-cc-pVTZ energies. A major goal of this fit is to describe the very long-range interaction accurately. This is done in this instance via the dipole-quadrupole interaction. The NaCl dipole and the H2 quadrupole are available through previous works over a large range of internuclear distances. We use these to obtain exact effect charges on each atom. Diffusion Monte Carlo calculations are done for the ground vibrational state using the new potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA