Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 366: 25-34, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870479

RESUMO

Strain robustness during production of recombinant molecules is of major interest to ensure bioprocess profitability. The heterogeneity of populations has been shown in the literature as a source of instability in bioprocesses. Thus, the heterogeneity of the population was studied by evaluating the robustness of the strains (stability of plasmid expression, cultivability, membrane integrity and macroscopic cell behavior) during well-controlled fedbatch cultures. On the context of microbial production of chemical molecules, isopropanol (IPA) has been produced by recombinant strains of Cupriavidus necator. Plasmid stability was monitored by the plate count method to assess the impact of isopropanol production on plasmid stability, depending on implanted plasmid stabilization systems for strain engineering designs. With the reference strain Re2133/pEG7c, an isopropanol titer of 15.1 g·L-1 could be achieved. When the isopropanol concentration has reached about 8 g. L-1, cell permeability increased (up to 25 %) and plasmid stability decreased significantly (up to 1.5 decimal reduction rate) resulting in decreased isopropanol production rates. Bioprocess robustness under isopropanol producing conditions was then investigated with two plasmid construction strategies (1) Post Segregational Killing hok/sok (in Re2133/pEG20) and (2) expression of GroESL chaperon proteins (in Re2133/pEG23). Plasmid stability for strain Re2133/pEG20 (PSK hok/sok) appears to be improved up to 11 g. L-1 of IPA compared to the reference strain (8 g. L-1 IPA). Nevertheless, cell permeability followed the same dynamic as the reference strain with a drastic increase around 8 g. L-1 IPA. On the contrary, the Re2133/pEG23 strain made it possible to minimize the cell permeability (with a constant value at 5 % IP permeability) and to increase the growth capacities in response to increased isopropanol concentrations but plasmid stability was the weakest. The metabolic burden, linked to either the overexpression of GroESL chaperones or the PSK hok/sok system, seems to be deleterious for the overall isopropanol production compared to the reference strain (RE2133/pEG7c) even if we have shown that the overexpression chaperones GroESL improve membrane integrity and PSK system hok/sok improve plasmid stability as long as isopropanol concentration does not exceed 11 g L- 1.


Assuntos
2-Propanol , Escherichia coli , 2-Propanol/metabolismo , Escherichia coli/genética , RNA Bacteriano/metabolismo , Plasmídeos/genética , Reatores Biológicos
2.
Enzyme Microb Technol ; 161: 110114, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070644

RESUMO

Phenotypic heterogeneity in bioprocesses is suspected to reduce performances, even in case of monoclonal cultures. Here, robustness of an engineered isopropanol-overproducing strain and heterogeneity of its plasmid expression level were evaluated in fed-batch cultures. Previously, eGFP was identified as a promising plasmid expression reporter for C. necator. Here, the behavior of 3 engineered strains (isopropanol overproducer, eGFP producer, and isopropanol/eGFP co-producers) was compared at the single-cell and population levels. Production yields and rates have been shown to be dependent on isopropanol/acetone tolerance. A link could be established between the variations in the fluorescence intensity distribution and isopropanol/acetone production using the eGFP-biosensor. Co-production of isopropanol and eGFP exhibited cumulative metabolic burden compared to single overexpression (isopropanol or eGFP). Expression of eGFP during isopropanol production resulted in lower isopropanol tolerance with a loss of membrane integrity resulting in protein leakage and reduced plasmid expression. The co-expression of heterologous isopropanol pathway and eGFP-biosensor enabled to demonstrate the heterogeneity of robustness and plasmid expression at the single cell level of C. necator. It highlighted the conflicting interactions between isopropanol overproduction and eGFP reporter system. Fluorescent reporter strains, a crucial tool for monitoring subpopulation heterogeneity although biases have to be considered.


Assuntos
Cupriavidus necator , 2-Propanol/metabolismo , Acetona/metabolismo , Cupriavidus necator/genética , Óperon , Plasmídeos/genética
3.
J Biotechnol ; 345: 17-29, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995560

RESUMO

Plasmid expression level heterogeneity in Cupriavidus necator was studied in response to stringent culture conditions, supposed to enhance plasmid instability, through plasmid curing strategies. Two plasmid curing strategies were compared based on their efficiency at generating heterogeneity in batch: rifampicin addition and temperature increase. A temperature increase from 30° to 37 °C was the most efficient plasmid curing strategy. To generate a heterogeneous population in terms of plasmid expression levels, successive batches at supra-optimal culture temperature (i.e. 37 °C) were initially conducted. Three distinct fluorescent subpopulations P0 (not fluorescent), P1 (low fluorescence intensity, median = 1 103) and P2 (high fluorescence intensity, median = 6 103) were obtained. From there, the chemostat culture was implemented to study the long-term stress response under well-controlled environment at defined dilution rates. For dilution rates comprised between 0.05 and 0.10 h-1, the subpopulation P2 (62% vs 90%) was favored compared to P1 cells (54% vs 1%), especially when growth rate increased. Our biosensor was efficient at discriminating subpopulation presenting different expression levels under stringent culture conditions. Plus, we showed that controlling growth kinetics had a stabilizing impact on plasmid expression levels, even under heterogeneous expression conditions.


Assuntos
Técnicas Biossensoriais , Cupriavidus necator , Cupriavidus necator/genética , Cinética , Plasmídeos/genética
4.
AMB Express ; 11(1): 151, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783891

RESUMO

It is of major interest to ensure stable and performant microbial bioprocesses, therefore maintaining high strain robustness is one of the major future challenges in industrial microbiology. Strain robustness can be defined as the persistence of genotypic and/or phenotypic traits in a system. In this work, robustness of an engineered strain is defined as plasmid expression stability, cultivability, membrane integrity and macroscopic cell behavior and was assessed in response to implementations of sugar feeding strategies (pulses and continuous) and two plasmid stabilization systems (kanamycin resistance and Post-Segregational Killing hok/sok). Fed-batch bioreactor cultures, relevant mode to reach high cell densities and higher cell generation number, were implemented to investigate the robustness of C. necator engineered strains. Host cells bore a recombinant plasmid encoding for a plasmid expression level monitoring system, based on eGFP fluorescence quantified by flow cytometry. We first showed that well-controlled continuous feeding in comparison to a pulse-based feeding allowed a better carbon use for protein synthesis (avoiding organic acid excretion), a lower heterogeneity of the plasmid expression and a lower cell permeabilization. Moreover, the plasmid stabilization system Post-Segregational Killing hok/sok, an autonomous system independent on external addition of compounds, showed the best ability to maintain plasmid expression level stability insuring a greater population homogeneity in the culture. Therefore, in the case of engineered C. necator, the PSK system hok/sok appears to be a relevant and an efficient alternative to antibiotic resistance system for selection pressure, especially, in the case of bioprocess development for economic and environmental reasons.

5.
Appl Microbiol Biotechnol ; 104(13): 5899-5914, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32358761

RESUMO

A methodology for plasmid expression level monitoring of eGFP expression suitable for dynamic processes was assessed during fermentation. This technique was based on the expression of a fluorescent biosensor (eGFP) encoded on a recombinant plasmid coupled to single-cell analysis. Fluorescence intensity at single-cell level was measured by flow cytometry. We demonstrated that promoter evaluation based on single-cell analysis versus classic global analysis brings valuable insights. Single-cell analysis pointed out the fact that intrinsic fluorescence increased with the strength of the promoter up to a threshold. Beyond that, cell permeability increases to excrete the fluorescent protein in the medium. The metabolic load due to the increase in the eGFP production in the case of strong constitutive promoters leads to slower growth kinetics compared with plasmid-free cells. With the strain Cupriavidus necator Re2133, growth rate losses were measured from 3% with the weak constitutive promoter Plac to 56% with the strong constitutive promoter Pj5. Through this work, it seems crucial to find a compromise between the fluorescence intensity in single cells and the metabolic load; in our conditions, the best compromise found was the weak promoter Plac. The plasmid expression level monitoring method was tested in the presence of a heterogeneous population induced by plasmid-curing methods. For all the identified subpopulations, the plasmid expression level heterogeneity was significantly detected at the level of fluorescence intensity in single cells. After cell sorting, growth rate and cultivability were assessed for each subpopulation. In conclusion, this eGFP biosensor makes it possible to follow the variations in the level of plasmid expression under conditions of population heterogeneity.Key Points•Development of a plasmid expression level monitoring method at the single-cell level by flow cytometry.•Promoter evaluation by single-cell analysis: cell heterogeneity and strain robustness.•Reporter system optimization for efficient subpopulation detection in pure cultures.


Assuntos
Cupriavidus necator/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Reatores Biológicos , Técnicas Biossensoriais , Cupriavidus necator/citologia , Cupriavidus necator/genética , Cupriavidus necator/crescimento & desenvolvimento , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA