Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987359

RESUMO

Platelet function testing is essential for the diagnosis of patients with bleeding disorders. Specifically, there is a need for a whole blood assay that is capable of analysing platelet behaviour in contact with a patient-specific autologous von Willebrand factor (vWF), under physiologically relevant conditions. The creation of surface topography capable of entrapping and uncoiling vWF for the support of subsequent platelet adhesion within the same blood sample offers a potential basis for such an assay. In this study, spin coating of polystyrene/poly (methyl methacrylate) (PS/PMMA) demixed solutions onto glass substrates in air has been used to attain surfaces with well-defined topographical features. The effect of augmenting the PS/PMMA solution with uniform 50 µm PS microspheres that can moderate the demixing process on the resultant surface features has also been investigated. The topographical features created here by spin coating under ambient air pressure conditions, rather than in nitrogen, which previous work reports, produces substrate surfaces with the ability to entrap vWF from flowing blood and facilitate platelet adhesion. The direct optical visualisation of fluorescently-labelled platelets indicates that topography resulting from inclusion of PS microspheres in the PS/PMMA spin coating solution increases the total number of platelets that adhere to the substrate surface over the period of the microfluidic assay. However, a detailed analysis of the adhesion rate, mean translocating velocity, mean translocation distance, and fraction of the stably adhered platelets measured during blood flow under arterial equivalent mechanical shear conditions indicates no significant difference for topographies created with or without inclusion of the PS microspheres.

2.
Materials (Basel) ; 15(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36556835

RESUMO

Polycaprolactone (PCL) is a well-established biomaterial, offering extensive mechanical attributes along with low cost, biocompatibility, and biodegradability; however, it lacks hydrophilicity, bioactivity, and electrical conductivity. Advances in 3D fabrication technologies allow for these sought-after attributes to be incorporated into the scaffolds during fabrication. In this study, solvent-free Fused Deposition Modelling was employed to fabricate 3D scaffolds from PCL with increasing amounts of graphene (G), in the concentrations of 0.75, 1.5, 3, and 6% (w/w). The PCL+G scaffolds created were characterised physico-chemically, electrically, and biologically. Raman spectroscopy demonstrated that the scaffold outer surface contained both PCL and G, with the G component relatively uniformly distributed. Water contact angle measurement demonstrated that as the amount of G in the scaffold increases (0.75-6% w/w), hydrophobicity decreases; mean contact angle for pure PCL was recorded as 107.22 ± 9.39°, and that with 6% G (PCL+6G) as 77.56 ± 6.75°. Electrochemical Impedance Spectroscopy demonstrated a marked increase in electroactivity potential with increasing G concentration. Cell viability results indicated that even the smallest addition of G (0.75%) resulted in a significant improvement in electroactivity potential and bioactivity compared with that for pure PCL, with 1.5 and 3% exhibiting the highest statistically significant increases in cell proliferation.

3.
J Mater Sci Mater Med ; 32(12): 148, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862915

RESUMO

There is continued focus on the development of new biomaterials and associated biological testing methods needed to reduce the time taken for their entry to clinical use. The application of Raman spectroscopy to the study of individual cells that have been in contact with biomaterials offers enhanced in vitro information in a potentially non-destructive testing regime. The work presented here reports the Raman spectral analysis of discreet U-2 OS bone cells after exposure to hydroxyapatite (HA) coated titanium (Ti) substrates in both the as-deposited and thermally annealed states. These data show that cells that were in contact with the bioactive HA surface for 7 days had spectral markers similar to those cultured on the Ti substrate control for the same period. However, the spectral features for those cells that were in contact with the annealed HA surface had indicators of significant differentiation at day 21 while cells on the as-deposited surface did not show these Raman changes until day 28. The cells adhered to pristine Ti control surface showed no spectral changes at any of the timepoints studied. The validity of these spectroscopic results has been confirmed using data from standard in vitro cell viability, adhesion, and proliferation assays over the same 28-day culture period. In this case, cell maturation was evidenced by the formation of natural bone apatite, which precipitated intracellularly for cells exposed to both types of HA-coated Ti at 21 and 28 days, respectively. The properties of the intracellular apatite were markedly different from that of the synthetic HA used to coat the Ti substrate with an average particle size of 230 nm, a crystalline-like shape and Ca/P ratio of 1.63 ± 0.5 as determined by SEM-EDX analysis. By comparison, the synthetic HA particles used as a control had an average size of 372 nm and were more-rounded in shape with a Ca/P ratio of 0.8 by XPS analysis and 1.28 by SEM-EDX analysis. This study shows that Raman spectroscopy can be employed to monitor single U-2 OS cell response to biomaterials that promote cell maturation towards de novo bone thereby offering a label-free in vitro testing method that allows for non-destructive analyses.


Assuntos
Osso e Ossos/citologia , Durapatita/farmacologia , Análise de Célula Única , Análise Espectral Raman , Titânio/farmacologia , Materiais Biocompatíveis , Biomarcadores , Linhagem Celular , Humanos , Teste de Materiais
4.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578018

RESUMO

Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedics and has shown a lot of promise for 'made-to-measure' implants via additive manufacturing approaches. However, PEEK is bioinert and needs to undergo surface modification to make it at least osteoconductive to ensure a more rapid, improved, and stable fixation that will last longer in vivo. One approach to solving this issue is to modify PEEK with bioactive agents such as hydroxyapatite (HA). The work reported in this study demonstrates the direct 3D printing of PEEK/HA composites of up to 30 weight percent (wt%) HA using a Fused Filament Fabrication (FFF) approach. The surface characteristics and in vitro properties of the composite materials were investigated. X-ray diffraction revealed the samples to be semi-crystalline in nature, with X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealing HA materials were available in the uppermost surface of all the 3D printed samples. In vitro testing of the samples at 7 days demonstrated that the PEEK/HA composite surfaces supported the adherence and growth of viable U-2 OS osteoblast like cells. These results demonstrate that FFF can deliver bioactive HA on the surface of PEEK bio-composites in a one-step 3D printing process.

5.
J Biomed Mater Res A ; 105(6): 1692-1702, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218482

RESUMO

Bioactive materials offer particular clinical benefits in the field of dental implantology, where differentiation of stem cells towards an osteoblastic lineage is required for osseointegration and appropriate function of implants in vivo. The aim of this study was to evaluate the osteoblastic response of Stro-1 +ve periodontal ligament stem cells (PDLSCs) to three well-characterized biomaterial surfaces: an abraded titanium surface (cpTi) control; a polycrystalline titanium surface, with both micro and nanotopography produced by radio frequency magnetron sputtering (TiTi); and the same surface incorporating a sputter deposited calcium phosphate coating (CaP-TiTi). The CaP-TiTi surfaces were nonstoichiometric, carbonated, and calcium rich with a Ca/P ratio of 1.74. PDLSCs were grown on each surface in the absence of supplementary osteogneic-inducing agents. Osteoblastic responses were assessed for up to 21 days in culture by measuring gene expression using real time q-PCR and via assessment of intracellular alkaline phosphatase (ALP) activity. Gene expression analysis for the CaP-TiTi surfaces showed a significant late stage up-regulation of Secreted Phosphoprotein 1. Additionally, there was a significant up-regulation of the Wnt signaling genes ß-catenin and Wnt Family Member 5 A on days 14 and 21, respectively for the CaP-TiTi surface. A significant increase in intracellular ALP at day 21 for the CaP-TiTi surface was also observed. These data suggest that the CaP-TiTi surfaces provide the bioactive conditions required for direct osteoblastic differentiation of PDLSCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1692-1702, 2017.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Osteoblastos/citologia , Ligamento Periodontal/citologia , Células-Tronco/citologia , Titânio/química , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Durapatita/química , Humanos , Osteoblastos/metabolismo , Osteogênese , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo , Propriedades de Superfície , Via de Sinalização Wnt
6.
J Mater Sci Mater Med ; 26(2): 65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25631262

RESUMO

Strontium substituted hydroxyapatite (SrHA) coatings have received a lot of interest recently as strontium (Sr) has been shown to have the dual benefit of promoting bone formation and reducing bone resorption, in vivo. In this work, SrHA coatings were deposited onto polycrystalline titanium surfaces using radio frequency (RF) magnetron co-sputtering and compared to those deposited from HA alone. In particular, the influence of different levels of Sr-substitution of the sputtering targets (5 and 13% Sr-substituted HA targets) on the properties of the deposited coatings produced at a low discharge power level (150 W) were investigated using FTIR, XPS, XRD, ToFSIMS and AFM techniques (both before and after annealing at 500 °C). The results show that Sr could be successfully incorporated into the HA lattice to form SrHA coatings and that they contained no other impurities. However, the coating produced from the 13% Sr-substituted target had a higher Ca+Sr/P ratio (1.95±0.14) and Sr content when compared to the coating produced from the 5% Sr-substituted target (1.58±0.20). The deposition rate also decreased with increasing Sr content of the sputtering targets. Furthermore, as the Sr content of the coatings increased, so did the preferred 002 orientation of the coating along with increased surface roughness and heterogeneity of the surface features. Therefore, this study has shown that RF magnetron sputtering offers a means to control attendant properties of Sr-substituted HA, such as the crystallinity, stoichiometry, phase purity and surface topography.


Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/síntese química , Durapatita/química , Gases em Plasma/química , Estrôncio/química , Titânio/química , Adsorção , Galvanoplastia/métodos , Teste de Materiais , Propriedades de Superfície
7.
Analyst ; 137(7): 1559-69, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22353857

RESUMO

Raman spectroscopy is employed to determine the suitability of the U20S osteoblast-like cell line for use as a model for human primary osteoblasts, with emphasis on the ability of these cell types to replicate their tissue of origin. It was found that both cell types demonstrated early stage mineral deposition that followed significantly different growth patterns. Analysis of the growth pattern and spectral data from primary cells revealed increasing bone quality ratios and a high crystallinity, consistent with previous reports. Conversely the investigation of the U20S osteoblast-like cell line provided evidence of dense multilayered mineralised regions that corresponded more closely to native bone in terms of its crystallinity and bone quality ratios. This finding contradicts previous reports on U20S osteoblast-like cells which have consistently described them as non-osteoinductive when cultured in various conditions on a number of substrates. This work demonstrates the successful application of Raman spectroscopy combined with biological and multivariate analysis for the investigation of osteoblast-like U20S cells and human primary osteoblasts, specifically with focus on the osteoinductive ability of the osteoblast-like cell line and the comparative differences in relation to the primary osteoblasts.


Assuntos
Modelos Biológicos , Osteoblastos/citologia , Antraquinonas/química , Linhagem Celular , Humanos , Imuno-Histoquímica , Cultura Primária de Células , Análise Espectral Raman
8.
J Mater Sci Mater Med ; 23(3): 835-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22286226

RESUMO

Being able to control the behaviour of osteoblast-like cells on a surface may provide a genuine insight into the material surface characteristics and help in creating a successful coating/cell interface. The possibility of creating a micro-environment that can induce proliferation, differentiation and mineralisation of bone cells in vitro, by successfully combining both chemistry and topography of a micro-fabricated substrate is an area that requires a multi-disciplinary approach. Utilising sputter deposition, a process that lends itself to high processability, in conjunction with photolithography allowing for the creation of highly repeatable etched surfaces, we aim to provide a successful combination of chemistry and topography. Correlating the substrate conditions with resultant osteoblast biological function and activity can ultimately be used with a view to modulating the behavior of osteoblast-like cells in vitro.


Assuntos
Fosfatos de Cálcio/química , Osteoblastos/citologia , Silício/química , Fosfatase Alcalina/metabolismo , Linhagem Celular , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Analyst ; 136(12): 2471-81, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21541414

RESUMO

The differentiation of stem cells into multi-lineages is essential to aid the development of tissue engineered materials that replicate the functionality of their tissue of origin. For this study, Raman spectroscopy was used to monitor the formation of a bone-like apatite mineral during the differentiation of human mesenchymal stem cells (hMSCs) towards an osteogenic lineage. Raman spectroscopy observed dramatic changes in the region dominated by the stretching of phosphate groups (950-970 cm(-1)) during the period of 7-28 days. Changes were also seen at 1030 cm(-1) and 1070 cm(-1), which are associated with the P-O symmetric stretch of PO(4)(3-) and the C-O vibration in the plane stretch of CO(3)(2-). Multivariate factor analysis revealed the presence of various mineral species throughout the 28 day culture period. Bone mineral formation was observed first at day 14 and was identified as a crystalline, non-substituted apatite. During the later stages of culture, different mineral species were observed, namely an amorphous apatite and a carbonate, substituted apatite, all of which are known to be Raman markers for a bone-like material. Band area ratios revealed that both the carbonate-to-phosphate and mineral-to-matrix ratios increased with age. When taken together, these findings suggest that the osteogenic differentiation of hMSCs at early stages resembles endochondral ossification. Due to the various mineral species observed, namely a disordered amorphous apatite, a B-type carbonate-substituted apatite and a crystalline non-substituted hydroxyapatite, it is suggested that the bone-like mineral observed here can be compared to native bone. This work demonstrates the successful application of Raman spectroscopy combined with biological and multivariate analyses for monitoring the various mineral species, degree of mineralisation and the crystallinity of hMSCs as they differentiate into osteoblasts.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Análise Espectral Raman/métodos , Diferenciação Celular , Células Cultivadas , Humanos
10.
J Mater Sci Mater Med ; 21(8): 2253-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20559698

RESUMO

Each year, NIBES hosts a spring conference that is jointly organised by Queen's University of Belfast and University of Ulster. The 29th NIBES Spring meeting took place on 8th April 2009 at Queen's University of Belfast. NIBES 2009 had an impressive scientific program with two international leading plenary speakers and 28 oral presentations.


Assuntos
Engenharia Biomédica/tendências , Humanos , Irlanda do Norte , Publicações , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA