Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712175

RESUMO

ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery, and virion components results in inhibition of ICP1's lifecycle. PLEs' are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA, and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.

2.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206122

RESUMO

Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), remodels the capsid it has been predicted to steal from the phage ICP1 (Netter et al., 2021). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (Kizziah et al., 2020). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.


Assuntos
Acetofenonas , Bacteriófagos , Vibrio cholerae , Capsídeo , Proteínas do Capsídeo , Bacteriófagos/genética , Escherichia coli
3.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36909475

RESUMO

Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, PLE, remodels the capsid it has been predicted to steal from the phage ICP1 (1). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like-particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold, that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (2). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.

4.
Annu Rev Virol ; 8(1): 285-304, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34314595

RESUMO

Bacteriophages or phages-viruses of bacteria-are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae-specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1's CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Sistemas CRISPR-Cas , Cólera/genética , Humanos , Vibrio cholerae/genética
5.
Nucleic Acids Res ; 49(8): 4386-4401, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33823541

RESUMO

Bacteria persist under constant threat of predation by bacterial viruses (phages). Bacteria-phage conflicts result in evolutionary arms races often driven by mobile genetic elements (MGEs). One such MGE, a phage satellite in Vibrio cholerae called PLE, provides specific and robust defense against a pervasive lytic phage, ICP1. The interplay between PLE and ICP1 has revealed strategies for molecular parasitism allowing PLE to hijack ICP1 processes in order to mobilize. Here, we describe the mechanism of PLE-mediated transcriptional manipulation of ICP1 structural gene transcription. PLE encodes a novel DNA binding protein, CapR, that represses ICP1's capsid morphogenesis operon. Although CapR is sufficient for the degree of capsid repression achieved by PLE, its activity does not hinder the ICP1 lifecycle. We explore the consequences of repression of this operon, demonstrating that more stringent repression achieved through CRISPRi restricts both ICP1 and PLE. We also discover that PLE transduces in modified ICP1-like particles. Examination of CapR homologs led to the identification of a suite of ICP1-encoded homing endonucleases, providing a putative origin for the satellite-encoded repressor. This work unveils a facet of the delicate balance of satellite-mediated inhibition aimed at blocking phage production while successfully mobilizing in a phage-derived particle.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , DNA Satélite/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Regulação Viral da Expressão Gênica , Sequências Repetitivas Dispersas , Vibrio cholerae/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/genética , Sítios de Ligação , Sistemas CRISPR-Cas , Proteínas do Capsídeo/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endonucleases/química , Endonucleases/genética , Óperon/genética , Domínios Proteicos , Transdução Genética , Vibrio cholerae/enzimologia , Vibrio cholerae/genética , Vírion/genética , Vírion/crescimento & desenvolvimento
6.
Can J Microbiol ; 63(10): 851-856, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28772085

RESUMO

Natural transformation is the acquisition of new genetic material via the uptake of exogenous DNA by competent bacteria. Acinetobacter baylyi is model for natural transformation. Here we focus on the natural transformation of A. baylyi ATCC 33305 grown in complex media and seek environmental conditions that appreciably affect transformation efficiency. We find that the transformation efficiency for A. baylyi is a resilient characteristic that remains high under most conditions tested. We do find several distinct conditions that alter natural transformation efficiency including addition of succinate, Fe2+ (ferrous) iron chelation, and substitution of sodium ions with potassium ones. These distinct conditions could be useful to fine tune transformation efficiency for researchers using A. baylyi as a model organism to study natural transformation.


Assuntos
Acinetobacter/efeitos dos fármacos , Cátions Monovalentes/farmacologia , Quelantes de Ferro/farmacologia , Ácido Succínico/farmacologia , Transformação Bacteriana/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Meios de Cultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA