Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
NPJ Breast Cancer ; 8(1): 96, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999225

RESUMO

Estrogen receptor alpha (ERα) drives mammary gland development and breast cancer (BC) growth through an evolutionarily conserved linkage of DNA binding and hormone activation functions. Therapeutic targeting of the hormone binding pocket is a widely utilized and successful strategy for breast cancer prevention and treatment. However, resistance to this endocrine therapy is frequently encountered and may occur through bypass or reactivation of ER-regulated transcriptional programs. We now identify the induction of an ERα isoform, ERα-LBD, that is encoded by an alternative ESR1 transcript and lacks the activation function and DNA binding domains. Despite lacking the transcriptional activity, ERα-LBD is found to promote breast cancer growth and resistance to the ERα antagonist fulvestrant. ERα-LBD is predominantly localized to the cytoplasm and mitochondria of BC cells and leads to enhanced glycolysis, respiration and stem-like features. Intriguingly, ERα-LBD expression and function does not appear to be restricted to cancers that express full length ERα but also promotes growth of triple-negative breast cancers and ERα-LBD transcript (ESR1-LBD) is also present in BC samples from both ERα(+) and ERα(-) human tumors. These findings point to ERα-LBD as a potential mediator of breast cancer progression and therapy resistance.

4.
Biophys J ; 118(6): 1248-1260, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32087096

RESUMO

We earlier reported cytoplasmic fluorescence exchange between cultured human fibroblasts (Fibs) and malignant cells (MCs). Others report similar transfer via either tunneling nanotubes (TNTs) or shed membrane vesicles, and this changes the phenotype of recipient cells. Our time-lapse microscopy showed most exchange was from Fibs into MCs, with less in the reverse direction. Although TNTs were seen, we were surprised transfer was not via TNTs but was instead via fine and often branching cell projections that defied direct visual resolution because of their size and rapid movement. Their structure was revealed nonetheless by their organellar cargo and the grooves they formed indenting MCs, which was consistent with holotomography. Discrete, rapid, and highly localized transfer events evidenced against a role for shed vesicles. Transfer coincided with rapid retraction of the cell projections, suggesting a hydrodynamic mechanism. Increased hydrodynamic pressure in retracting cell projections normally returns cytoplasm to the cell body. We hypothesize "cell-projection pumping" (CPP), in which cytoplasm in retracting cell projections partially equilibrates into adjacent recipient cells via microfusions that form temporary intercellular cytoplasmic continuities. We tested plausibility for CPP by combined mathematical modeling, comparison of predictions from the model with experimental results, and then computer simulations based on experimental data. The mathematical model predicted preferential CPP into cells with lower cell stiffness, expected from equilibration of pressure toward least resistance. Predictions from the model were satisfied when Fibs were cocultured with MCs and fluorescence exchange was related to cell stiffness by atomic force microscopy. When transfer into 5000 simulated recipient MCs or Fibs was studied in computer simulations, inputting experimental cell stiffness and donor cell fluorescence values generated transfers to simulated recipient cells similar to those seen by experiment. We propose CPP as a potentially novel mechanism in mammalian intercellular cytoplasmic transfer and communication.


Assuntos
Comunicação Celular , Nanotubos , Animais , Técnicas de Cocultura , Citoplasma , Citosol , Humanos , Hidrodinâmica
5.
Proc Natl Acad Sci U S A ; 117(8): 4310-4319, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041868

RESUMO

Immunological synapse formation between cytotoxic T lymphocytes (CTLs) and the target cells they aim to destroy is accompanied by reorientation of the CTL centrosome to a position beneath the synaptic membrane. Centrosome polarization is thought to enhance the potency and specificity of killing by driving lytic granule fusion at the synapse and thereby the release of perforin and granzymes toward the target cell. To test this model, we employed a genetic strategy to delete centrioles, the core structural components of the centrosome. Centriole deletion altered microtubule architecture as expected but surprisingly had no effect on lytic granule polarization and directional secretion. Nevertheless, CTLs lacking centrioles did display substantially reduced killing potential, which was associated with defects in both lytic granule biogenesis and synaptic actin remodeling. These results reveal an unexpected role for the intact centrosome in controlling the capacity but not the specificity of cytotoxic killing.


Assuntos
Centríolos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Centrossomo/imunologia , Testes Imunológicos de Citotoxicidade , Camundongos Endogâmicos C57BL , Microtúbulos/genética , Microtúbulos/imunologia , Especificidade da Espécie
6.
Sci Immunol ; 4(33)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902904

RESUMO

Cytotoxic T lymphocytes (CTLs) kill by forming immunological synapses with target cells and secreting toxic proteases and the pore-forming protein perforin into the intercellular space. Immunological synapses are highly dynamic structures that boost perforin activity by applying mechanical force against the target cell. Here, we used high-resolution imaging and microfabrication to investigate how CTLs exert synaptic forces and coordinate their mechanical output with perforin secretion. Using micropatterned stimulatory substrates that enable synapse growth in three dimensions, we found that perforin release occurs at the base of actin-rich protrusions that extend from central and intermediate locations within the synapse. These protrusions, which depended on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, were required for synaptic force exertion and efficient killing. They also mediated physical deformation of the target cell surface during CTL-target cell interactions. Our results reveal the mechanical basis of cellular cytotoxicity and highlight the functional importance of dynamic, three-dimensional architecture in immune cell-cell interfaces.


Assuntos
Sinapses Imunológicas/imunologia , Perforina/imunologia , Linfócitos T Citotóxicos/imunologia , Complexo 2-3 de Proteínas Relacionadas à Actina/imunologia , Actinas/imunologia , Animais , Camundongos , Proteína da Síndrome de Wiskott-Aldrich/imunologia
7.
J Cell Biol ; 218(2): 524-540, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30626718

RESUMO

Skeletal muscle consists of multinucleated cells in which the myonuclei are evenly spaced throughout the cell. In Drosophila, this pattern is established in embryonic myotubes, where myonuclei move via microtubules (MTs) and the MT-associated protein Ensconsin (Ens)/MAP7, to achieve their distribution. Ens regulates multiple aspects of MT biology, but little is known about how Ens itself is regulated. We find that Ens physically interacts and colocalizes with Bsg25D, the Drosophila homologue of the centrosomal protein Ninein. Bsg25D loss enhances myonuclear positioning defects in embryos sensitized by partial Ens loss. Bsg25D overexpression causes severe positioning defects in immature myotubes and fully differentiated myofibers, where it forms ectopic MT organizing centers, disrupts perinuclear MT arrays, reduces muscle stiffness, and decreases larval crawling velocity. These studies define a novel relationship between Ens and Bsg25D. At endogenous levels, Bsg25D positively regulates Ens activity during myonuclear positioning, but excess Bsg25D disrupts Ens localization and MT organization, with disastrous consequences for myonuclear positioning and muscle function.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética
8.
Med Phys ; 45(5): 2179-2185, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29480927

RESUMO

PURPOSE: Genomic profiling of biopsied tissue is the basis for precision cancer therapy. However, biopsied materials may not contain sufficient amounts of tumor deoxyribonucleonic acid needed for the analysis. We propose a method to determine the adequacy of specimens for performing genomic profiling by quantifying their metabolic activity. METHODS: We estimated the average density of tumor cells in biopsy specimens needed to successfully perform genomic analysis following the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) protocol from the minimum amount of deoxyribonucleonic acid needed and the volume of tissue typically used for analysis. The average 18 F-FDG uptake per cell was assessed by incubating HT-29 adenocarcinoma tumor cells in 18 F-FDG containing solution and then measuring their activity with a scintillation well counter. Consequently, we evaluated the response of two devices around the minimum expected activities which would indicate genomic profiling adequacy of biopsy specimens obtained under 18 F-FDG PET/CT guidance. Surrogate samples obtained using 18G core needle biopsies of gels containing either 18 F-FDG-loaded cells in the expected concentrations or the corresponding activity were measured using autoradiography and a scintillation well counter. Autoradiography was performed using a CCD-based device with real-time image display as well as with digital autoradiography imaging plates following a 30-min off-line protocol for specimen activity determination against previously established calibration. RESULTS: Cell incubation experiments and estimates obtained from quantitative autoradiography of biopsy specimens (QABS) indicate that specimens acquired under 18 F-FDG PET/CT guidance that contained the minimum amount of cells needed for genomic profiling would have an average activity concentration in the range of about 3 to about 9 kBq/mL. When exposed to specimens with similar activity concentration, both a CCD-based autoradiography device and a scintillation well counter produced signals with sufficient signal-to-background ratio for specimen genomic adequacy identification in less than 10 min, which is short enough to allow procedure guidance. CONCLUSION: Scintillation well counter measurements and CCD-based autoradiography have adequate sensitivity to detect the tumor burden needed for genomic profiling during 18 F-FDG PET/CT-guided 18G core needle biopsies of liver adenocarcinoma metastases.


Assuntos
Autorradiografia/instrumentação , Fluordesoxiglucose F18 , Genômica , Biópsia Guiada por Imagem/instrumentação , Contagem de Cintilação/instrumentação , Transporte Biológico , Estudos de Viabilidade , Fluordesoxiglucose F18/metabolismo , Células HT29 , Humanos , Injeções , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
9.
J Exp Med ; 212(11): 1819-32, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26438361

RESUMO

Cohesin complex members have recently been identified as putative tumor suppressors in hematologic and epithelial malignancies. The cohesin complex guides chromosome segregation; however, cohesin mutant leukemias do not show genomic instability. We hypothesized that reduced cohesin function alters chromatin structure and disrupts cis-regulatory architecture of hematopoietic progenitors. We investigated the consequences of Smc3 deletion in normal and malignant hematopoiesis. Biallelic Smc3 loss induced bone marrow aplasia with premature sister chromatid separation and revealed an absolute requirement for cohesin in hematopoietic stem cell (HSC) function. In contrast, Smc3 haploinsufficiency increased self-renewal in vitro and in vivo, including competitive transplantation. Smc3 haploinsufficiency reduced coordinated transcriptional output, including reduced expression of transcription factors and other genes associated with lineage commitment. Smc3 haploinsufficiency cooperated with Flt3-ITD to induce acute leukemia in vivo, with potentiated Stat5 signaling and altered nucleolar topology. These data establish a dose dependency for cohesin in regulating chromatin structure and HSC function.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Hematopoese , Leucemia Mieloide Aguda/etiologia , Animais , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Cromatina/química , Proteínas Cromossômicas não Histona/genética , Haploinsuficiência , Células-Tronco Hematopoéticas/fisiologia , Leucemia Mieloide Aguda/genética , Camundongos , Fator de Transcrição STAT5/fisiologia , Tirosina Quinase 3 Semelhante a fms/genética , Coesinas
10.
Plant Physiol ; 162(2): 689-706, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23613272

RESUMO

During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Folhas de Planta/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/genética , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Tricomas/metabolismo
11.
Retrovirology ; 6: 56, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19497112

RESUMO

BACKGROUND: Host restriction factor APOBEC3G (A3G) blocks human immunodeficiency virus type 1 (HIV-1) replication by G-to-A hypermutation, and by inhibiting DNA synthesis and provirus formation. Previous reports have suggested that A3G is a dimer and its virion incorporation is mediated through interactions with viral or nonviral RNAs and/or HIV-1 Gag. We have now employed a bimolecular fluorescence complementation assay (BiFC) to analyze the intracellular A3G-A3G, A3G-RNA, and A3G-Gag interactions in living cells by reconstitution of yellow fluorescent protein (YFP) from its N- or C-terminal fragments. RESULTS: The results obtained with catalytic domain 1 and 2 (CD1 and CD2) mutants indicate that A3G-A3G and A3G-Gag multimerization is dependent on an intact CD1 domain, which is required for RNA binding. A mutant HIV-1 Gag that exhibits reduced RNA binding also failed to reconstitute BiFC with wild-type A3G, indicating a requirement for both HIV-1 Gag and A3G to bind to RNA for their multimerization. Addition of a non-specific RNA binding peptide (P22) to the N-terminus of a CD1 mutant of A3G restored BiFC and virion incorporation, but failed to inhibit viral replication, indicating that the mutations in CD1 resulted in additional defects that interfere with A3G's antiviral activity. CONCLUSION: These studies establish a robust BiFC assay for analysis of intracellular interactions of A3G with other macromolecules. The results indicate that in vivo A3G is a monomer that forms multimers upon binding to RNA. In addition, we observed weak interactions between wild-type A3G molecules and RNA binding-defective mutants of A3G, which could explain previously described protein-protein interactions between purified A3G molecules.


Assuntos
Citidina Desaminase/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Espaço Intracelular/metabolismo , Multimerização Proteica , RNA/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Domínio Catalítico , Linhagem Celular , Citidina Desaminase/química , Humanos , Proteínas Luminescentes , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Replicação Viral
12.
J Virol ; 82(5): 2405-17, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18094158

RESUMO

Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P(2) depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P(2) depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P(2)-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P(2). To examine a putative Gag interaction with PI(4,5)P(2), we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P(2). Using this assay, we observed that PI(4,5)P(2) significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P(2) for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P(2) binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P(2)-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P(2) on the membrane and that the MA basic domain mediates this interaction.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Células HeLa , Humanos , Lipossomos , Microscopia de Fluorescência , Ligação Proteica
13.
Plant J ; 51(4): 589-603, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17584190

RESUMO

Functional studies of Tobacco mosaic virus (TMV) infection using virus derivatives expressing functional, dysfunctional, and temperature-sensitive movement protein (MP) mutants indicated that the cell-to-cell transport of TMV RNA is functionally correlated with the association of MP with microtubules. However, the role of microtubules in the movement process during early infection remains unclear, since MP accumulates on microtubules rather late in infection and treatment of plants with microtubule-disrupting agents fails to strongly interfere with cell-to-cell movement of TMV RNA. To further test the role of microtubules in TMV cell-to-cell movement, we investigated TMV strain Ni2519, which is temperature-sensitive for movement. We demonstrate that the temperature-sensitive defect in movement is correlated with temperature-sensitive changes in the localization of MP to microtubules. Furthermore, we show that during early phases of recovery from non-permissive conditions, the MP localizes to microtubule-associated particles. Similar particles are found in cells at the leading front of spreading TMV infection sites. Initially mobile, the particles become immobile when MP starts to accumulate along the length of the particle-associated microtubules. Our observations confirm a role for microtubules in the spread of TMV infection and associate this role with microtubule-associated trafficking of MP-containing particles in cells engaged in the cell-to-cell movement of the TMV genome.


Assuntos
Microtúbulos/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Viral/metabolismo , Vírus do Mosaico do Tabaco/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Plantas Geneticamente Modificadas , Transporte de RNA , RNA Viral/química , RNA Viral/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
14.
Virology ; 360(2): 388-97, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17156810

RESUMO

In this report, we examined the abilities and requirements of heterologous Gag proteins to functionally complement each other to support viral replication. Two distantly related gammaretroviruses, murine leukemia virus (MLV) and spleen necrosis virus (SNV), were used as a model system because SNV proteins can support MLV vector replication. Using chimeric or mutant Gag proteins that could not efficiently support MLV vector replication, we determined that a homologous capsid (CA) domain was necessary for the functional complementation of MLV and SNV Gag proteins. Findings from the bimolecular fluorescence complementation assay revealed that MLV and SNV Gag proteins were capable of colocalizing and interacting in cells. Taken together, our results indicated that MLV and SNV Gag proteins can interact in cells; however, a homologous CA domain is needed for functional complementation of MLV and SNV Gag proteins to complete virus replication. This requirement of homologous Gag most likely occurs at a postassembly step(s) of the viral replication.


Assuntos
Proteínas do Capsídeo/fisiologia , Produtos do Gene gag/fisiologia , Vírus da Leucemia Murina/fisiologia , Vírus do Infarto Esplênico do Pato de Trager/fisiologia , Replicação Viral , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Células/química , Cães , Produtos do Gene gag/metabolismo , Teste de Complementação Genética , Humanos , Microscopia Confocal , Estrutura Terciária de Proteína
15.
Mol Cell ; 23(2): 281-7, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857594

RESUMO

Approximately one million people in the world are dually infected with both HIV-1 and HIV-2. To identify potential interactions between these two human pathogens, we examined whether HIV-1 and HIV-2 Gag proteins can coassemble and functionally complement each other. We generated HIV-1- and HIV-2-based vectors with mutations in Gag; compared with wild-type vectors, these mutants had drastically decreased viral titers. Coexpression of the mutant HIV-1 and HIV-2 Gag could generate infectious viruses; furthermore, heterologous complementation in certain combinations showed efficiency similar to homologous complementation. Additionally, we used bimolecular fluorescence complementation analysis to directly demonstrate that HIV-1 and HIV-2 Gag can interact and coassemble. Taken together, our results indicate that HIV-1 and HIV-2 Gag polyproteins can coassemble and functionally complement each other during virus replication; to our knowledge, this is the first demonstration of its kind. These studies have important implications for AIDS treatment and the evolution of primate lentiviruses.


Assuntos
Produtos do Gene gag/biossíntese , Produtos do Gene gag/genética , HIV-1/genética , HIV-1/metabolismo , HIV-2/genética , HIV-2/metabolismo , Teste de Complementação Genética , Humanos , Replicação Viral/genética
16.
J Virol ; 80(12): 5807-21, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731920

RESUMO

The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.


Assuntos
Centrossomo/fisiologia , Microtúbulos/metabolismo , Vírus do Mosaico do Tabaco/patogenicidade , Proteínas Virais/fisiologia , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/metabolismo , Proteínas do Movimento Viral em Plantas , Ligação Proteica , Proteínas Virais/metabolismo
17.
Nature ; 423(6941): 760-2, 2003 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-12802336

RESUMO

Plant genome stability is known to be affected by various abiotic environmental conditions, but little is known about the effect of pathogens. For example, exposure of maize plants to barley stripe mosaic virus seems to activate transposable elements and to cause mutations in the non-infected progeny of infected plants. The induction by barley stripe mosaic virus of an inherited effect may mean that the virus has a non-cell-autonomous influence on genome stability. Infection with Peronospora parasitica results in an increase in the frequency of somatic recombination in Arabidopsis thaliana; however, it is unclear whether effects on recombination require the presence of the pathogen or represent a systemic plant response. It is also not clear whether the changes in the frequency of somatic recombination can be inherited. Here we report a threefold increase in homologous recombination frequency in both infected and non-infected tissue of tobacco plants infected with either tobacco mosaic virus or oilseed rape mosaic virus. These results indicate the existence of a systemic recombination signal that also results in an increased frequency of meiotic and/or inherited late somatic recombination.


Assuntos
Rearranjo Gênico/genética , Nicotiana/genética , Nicotiana/virologia , Vírus de Plantas/fisiologia , Recombinação Genética/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Meiose , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Nicotiana/crescimento & desenvolvimento , Vírus do Mosaico do Tabaco/fisiologia
18.
J Virol ; 76(8): 3974-80, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11907237

RESUMO

The movement protein (MP) of Tobacco mosaic virus (TMV) facilitates the cell-to-cell transport of the viral RNA genome through plasmodesmata (Pd). A previous report described the functional reversion of a dysfunctional mutation in MP (Pro81Ser) by two additional amino acid substitution mutations (Thr104Ile and Arg167Lys). To further explore the mechanism underlying this intramolecular complementation event, the mutations were introduced into a virus derivative expressing the MP as a fusion to green fluorescent protein (GFP). Microscopic analysis of infected protoplasts and of infection sites in leaves of MP-transgenic Nicotiana benthamiana indicates that MP(P81S)-GFP and MP(P81S;T104I;R167K)-GFP differ in subcellular distribution. MP(P81S)-GFP lacks specific sites of accumulation in protoplasts and, in epidermal cells, exclusively localizes to Pd. MP(P81S;T104I;R167K)-GFP, in contrast, in addition localizes to inclusion bodies and microtubules and thus exhibits a subcellular localization pattern that is similar, if not identical, to the pattern reported for wild-type MP-GFP. Since accumulation of MP to inclusion bodies is not required for function, these observations confirm a role for microtubules in TMV RNA cell-to-cell transport.


Assuntos
Microtúbulos/fisiologia , RNA Viral/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Transporte Biológico , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas , Protoplastos/metabolismo , Protoplastos/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA