Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Vis ; 8: 407-15, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12432342

RESUMO

PURPOSE: To study the role of mimecan, a member of the small leucine-rich proteoglycans (SLRPs) gene family and one of the major components of the cornea and other connective tissues, mice that lack a functional mimecan gene were generated and characterized. METHODS: Mimecan-deficient mice were generated by gene-targeting using standard techniques. Mice were genotyped by Southern blot analysis. The absence of mimecan transcripts was confirmed by Northern blot analysis. Corneal clarity was examined by slit lamp biomicroscopy. The strength of the skin was evaluated using a biomechanical skin fragility test. Collagen morphology in cornea and skin preparations from mimecan-null and control wild-type mice was analyzed by transmission electron microscopy. The diameter of collagen fibrils in these tissues was determined by morphometric analysis. RESULTS: Mice lacking mimecan appear to develop normally, are viable and fertile. In a controlled laboratory environment they do not display an evident pathological phenotype compared to wild type mice. Examination of corneal clarity and measurements of corneal thickness show no significant changes in the cornea. However, a skin fragility test revealed a moderate reduction in the tensile strength of skin from mutant mice. Ultrastructural analyses show, on average, thicker collagen fibrils in both corneal and skin preparations from mimecan-null mice. Collagen fibrils from the cornea of mutant mice show an average diameter of 31.84+/-0.322 nm, versus 22.40+/-0.296 nm in their wild type litter-mates. The most pronounced increase in collagen fibril diameter was found in the skin of mimecan-null mice, who demonstrated an average diameter of 130.33+/-1.769 nm, versus 78.82+/-1.157 nm in the wild type mice. In addition, size variability and altered collagen morphology was detected in dorsal and tail skin preparations from the mutant mice. CONCLUSIONS: The results of the present study demonstrate that mimecan, similar to other members of the SLRP gene family, has a role in regulating collagen fibrillogenesis in vivo. Further studies, such as functional challenges, an evaluation of potential compensation by other proteins (including members of the SLRP family), and generation of double-knockouts will be necessary to fully uncover physiological functions of mimecan in mice.


Assuntos
Córnea/metabolismo , Colágenos Fibrilares/metabolismo , Glicoproteínas/fisiologia , Pele/metabolismo , Animais , Northern Blotting , Southern Blotting , Osso e Ossos/diagnóstico por imagem , Córnea/patologia , Córnea/ultraestrutura , Feminino , Colágenos Fibrilares/ultraestrutura , Substâncias de Crescimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Radiografia , Pele/patologia , Pele/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA