Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(34): 30939-30948, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663455

RESUMO

BODIPY dyes substituted by phenol or -COOMe units at the meso-position (C8) with and without a distyryl group including a methoxy moiety at the -C3 and -C5 positions of the BODIPY have been synthesized to analyze the photophysical properties. To clarify the ground-state interaction, absorption and emission features were investigated in the THF environment. Extending the π-conjugation with the methoxy moiety at -C3 and -C5 positions of BODIPY leads to a spectral shifting of the absorption maxima toward red by 120 nm. In addition, attaching the -COOMe unit at the meso-position of the BODIPY structure increases nonradiative molecular relaxation as compared to compounds possessing phenol substituents at the same position. We have investigated the effect of phenol and a -COOMe group and π-extended conjugation length with a methoxy moiety on the properties of two-photon absorption (TPA) and electron transfer dynamics by performing open-aperture (OA) Z-scan and femtosecond transient absorption spectroscopy measurements, respectively. The synthesized BODIPY compounds with the distyryl group including the methoxy unit show TPA character due to the longer conjugation length and therefore intramolecular charge transfer ability. Based on the OA Z-scan experiments upon photoexcitation with 800 nm pulsed laser light, TPA cross-section values were obtained as 74 and 81 GM for the compounds possessing phenol and -COOMe units at the meso-position of BODIPY treated by distyryl group with methoxy moieties, respectively. Additionally, optical and electronic properties were calculated theoretically by using the DFT method.

2.
Chemphyschem ; 24(5): e202200735, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377545

RESUMO

Borondipyrromethene (BODIPY) chromophores are composed of a functional-COOH group at meso position with or without a biphenyl ring, and their compounds with heavy iodine atoms at -2, -6 positions of the BODIPY indacene core were synthesized. The photophysical properties of the compounds were studied with steady-state absorption and fluorescence measurements. It was observed that the absorption band is significantly red-shifted, and fluorescence signals are quenched in the presence of iodine atoms. In addition to that, it was indicated that the biphenyl ring does not affect the spectral shifting in the absorption as well as fluorescence spectra. In an attempt to investigate the effect of π-expanded biphenyl moieties and heavy iodine atoms on charge transfer dynamics, femtosecond transient absorption spectroscopy measurements were carried out in the environment of the tetrahydrofuran (THF) solution. Based on the performed ultrafast pump-probe spectroscopy, BODIPY compounds with iodine atoms lead to intersystem crossing (ISC) and ISC rates were determined as 150 ps and 180 ps for iodine BODIPY compounds with and without π-expanded biphenyl moieties, respectively. According to the theoretical results, the charge transfer in the investigated compounds mostly appears to be intrinsic local excitations, corresponding to high photoluminescence efficiency. These experimental findings are useful for the design and study of the fundamental photochemistry of organic triplet photosensitizers.

3.
Comput Math Methods Med ; 2015: 893507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161132

RESUMO

Familial mediterranean fever (FMF) and Cryopyrin associated periodic syndromes (CAPS) are two prototypical hereditary autoinflammatory diseases, characterized by recurrent episodes of fever and inflammation as a result of mutations in MEFV and NLRP3 genes encoding Pyrin and Cryopyrin proteins, respectively. Pyrin and Cryopyrin play key roles in the multiprotein inflammasome complex assembly, which regulates activity of an enzyme, Caspase 1, and its target cytokine, IL-1ß. Overproduction of IL-1ß by Caspase 1 is the main cause of episodic fever and inflammatory findings in FMF and CAPS. We present a unifying dynamical model for FMF and CAPS in the form of coupled nonlinear ordinary differential equations. The model is composed of two subsystems, which capture the interactions and dynamics of the key molecular players and the insults on the immune system. One of the subsystems, which contains a coupled positive-negative feedback motif, captures the dynamics of inflammation formation and regulation. We perform a comprehensive bifurcation analysis of the model and show that it exhibits three modes, capturing the Healthy, FMF, and CAPS cases. The mutations in Pyrin and Cryopyrin are reflected in the values of three parameters in the model. We present extensive simulation results for the model that match clinical observations.


Assuntos
Síndromes Periódicas Associadas à Criopirina/diagnóstico , Síndromes Periódicas Associadas à Criopirina/fisiopatologia , Febre Familiar do Mediterrâneo/diagnóstico , Febre Familiar do Mediterrâneo/fisiopatologia , Algoritmos , Proteínas de Transporte/genética , Simulação por Computador , Proteínas do Citoesqueleto/genética , Humanos , Inflamassomos , Inflamação , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Interleucina-1beta/fisiologia , Interleucina-6/fisiologia , Modelos Biológicos , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pirina , Receptores de Interleucina-1/fisiologia , Receptores Tipo II de Interleucina-1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA