Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 299(6): 104796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150325

RESUMO

Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q, and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as a tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to three methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In Molecular Dynamics simulations, we determined key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Lisina , Metilação , Neoplasias , Humanos , Histonas/química , Histonas/metabolismo , Lisina/química , Lisina/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mutação
2.
Protein Sci ; 32(1): e4542, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519786

RESUMO

The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Proteína 2 de Ligação a Metil-CpG , Sítios de Ligação , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Células NIH 3T3 , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Histonas/química , Histonas/metabolismo , Humanos
3.
Biochimie ; 198: 86-91, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35341929

RESUMO

The H3.3 G34W mutation has been observed in 90% of the patients affected by giant cell tumor of bone (GCTB). It had been shown to reduce the activity of the SETD2 H3K36 protein lysine methyltransferase (PKMT) and lead to genome wide changes in epigenome modifications including a global reduction in DNA methylation. Here, we investigated the effect of the H3.3 G34W mutation on the activity of the H3K36me2 methyltransferase NSD1, because NSD1 is known to play an important role in the differentiation of chondrocytes and osteoblasts. Unexpectedly, we observed that H3.3 G34W has a gain-of-function effect and it stimulates K36 methylation by NSD1 by about 2.3-fold with peptide substrates and 6.3-fold with recombinant nucleosomal substrates. This effect is specific for NSD1, as NSD2 shows only a mild stimulation on G34W substrates. The potential downstream effects of the G34W induced hyperactivity of NSD1 on DNA methylation, H3K27me3, histone acetylation and splicing are discussed.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Mutação , Processamento de Proteína Pós-Traducional
4.
Commun Biol ; 5(1): 192, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236925

RESUMO

Recently, the structure of the DNMT3A2/3B3 heterotetramer complex bound to a mononucleosome was reported. Here, we investigate DNA methylation of recombinant unmodified, H3KC4me3 and H3KC36me3 containing mononucleosomes by DNMT3A2, DNMT3A catalytic domain (DNMT3AC) and the DNMT3AC/3B3C complex. We show strong protection of the nucleosomal bound DNA against methylation, but efficient linker-DNA methylation next to the nucleosome core. High and low methylation levels of two specific CpG sites next to the nucleosome core agree well with details of the DNMT3A2/3B3-nucleosome structure. Linker DNA methylation next to the nucleosome is increased in the absence of H3K4me3, likely caused by binding of the H3-tail to the ADD domain leading to relief of autoinhibition. Our data demonstrate a strong stimulatory effect of H3K36me3 on linker DNA methylation, which is independent of the DNMT3A-PWWP domain. This observation reveals a direct functional role of H3K36me3 on the stimulation of DNA methylation, which could be explained by hindering the interaction of the H3-tail and the linker DNA. We propose an evolutionary model in which the direct stimulatory effect of H3K36me3 on DNA methylation preceded its signaling function, which could explain the evolutionary origin of the widely distributed "active gene body-H3K36me3-DNA methylation" connection.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Ligação Proteica
5.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266419

RESUMO

Clr4 is a histone H3 lysine 9 methyltransferase in Schizosaccharomyces pombe that is essential for heterochromatin formation. Previous biochemical and structural studies have shown that Clr4 is in an autoinhibited state in which an autoregulatory loop (ARL) blocks the active site. Automethylation of lysine residues in the ARL relieves autoinhibition. To investigate the mechanism of Clr4 regulation by autoinhibition and automethylation, we exchanged residues in the ARL by site-directed mutagenesis leading to stimulation or inhibition of automethylation and corresponding changes in Clr4 catalytic activity. Furthermore, we demonstrate that Clr4 prefers monomethylated (H3K9me1) over unmodified (H3K9me0) histone peptide substrates, similar to related human enzymes and, accordingly, H3K9me1 is more efficient in overcoming autoinhibition. Due to enzyme activation by automethylation, we observed a sigmoidal dependence of Clr4 activity on the AdoMet concentration, with stimulation at high AdoMet levels. In contrast, an automethylation-deficient mutant showed a hyperbolic Michaelis-Menten type relationship. These data suggest that automethylation of the ARL could act as a sensor for AdoMet levels in cells and regulate the generation and maintenance of heterochromatin accordingly. This process could connect epigenome modifications with the metabolic state of cells. As other human protein lysine methyltransferases (for example, PRC2) also use automethylation/autoinhibition mechanisms, our results may provide a model to describe their regulation as well.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Regulação Alostérica , Domínio Catalítico , Histonas/metabolismo , Cinética , Metilação
6.
Commun Biol ; 3(1): 600, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077812

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Commun Biol ; 3(1): 511, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939018

RESUMO

SETD2 catalyzes methylation at lysine 36 of histone H3 and it has many disease connections. We investigated the substrate sequence specificity of SETD2 and identified nine additional peptide and one protein (FBN1) substrates. Our data showed that SETD2 strongly prefers amino acids different from those in the H3K36 sequence at several positions of its specificity profile. Based on this, we designed an optimized super-substrate containing four amino acid exchanges and show by quantitative methylation assays with SETD2 that the super-substrate peptide is methylated about 290-fold more efficiently than the H3K36 peptide. Protein methylation studies confirmed very strong SETD2 methylation of the super-substrate in vitro and in cells. We solved the structure of SETD2 with bound super-substrate peptide containing a target lysine to methionine mutation, which revealed better interactions involving three of the substituted residues. Our data illustrate that substrate sequence design can strongly increase the activity of protein lysine methyltransferases.


Assuntos
Histona-Lisina N-Metiltransferase/economia , Processamento de Proteína Pós-Traducional/genética , Especificidade por Substrato/genética , Sequência de Aminoácidos/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Lisina , Metilação , Mutação/genética , Peptídeos/genética
8.
J Mol Biol ; 431(17): 3068-3080, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31255706

RESUMO

SUV420H1 is a protein lysine methyltransferase that introduces di- and trimethylation of H4K20 and is frequently mutated in human cancers. We investigated the functional effects of eight somatic cancer mutations on SUV420H1 activity in vitro and in cells. One group of mutations (S255F, K258E, A269V) caused a reduction of the catalytic activity on peptide and nucleosome substrates. The mutated amino acids have putative roles in AdoMet binding and recognition of H4 residue D24. Group 2 mutations (E238V, D249N, E320K) caused a reduction of activity on peptide substrates, which was partially recovered when using nucleosomal substrates. The corresponding residues could have direct or indirect roles in peptide and AdoMet binding, but the effects of the mutations can be overcome by additional interactions between SUV420H1 and the nucleosome substrate. The third group of mutations (S283L, S304Y) showed enhanced activity with peptide substrates when compared with nucleosomal substrates, suggesting that these residues are involved in nucleosomal interaction or allosteric activation of SUV420H1 after nucleosome binding. Group 2 and 3 mutants highlight the role of nucleosomal contacts for SUV420H1 regulation in agreement with the high activity of this enzyme on nucleosomal substrates. Strikingly, seven of the somatic cancer mutations studied here led to a reduction of the catalytic activity of SUV420H1 in cells, suggesting that SUV420H1 activity might have a tumor suppressive function. This could be explained by the role of H4K20me2/3 in DNA repair, suggesting that loss or reduction of SUV420H1 activity could contribute to a mutator phenotype in cancer cells.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mutação , Neoplasias/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Reparo do DNA , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nucleossomos , S-Adenosilmetionina/metabolismo
9.
Nucleic Acids Res ; 46(17): 9044-9056, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30102379

RESUMO

Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.


Assuntos
Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA/química , Epigênese Genética , Histonas/genética , Proteína 2 de Ligação a Metil-CpG/genética , Regulação Alostérica , Animais , Sítios de Ligação , Química Encefálica , Cromatina/química , Clonagem Molecular , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Histonas/química , Histonas/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutagênese Sítio-Dirigida/métodos , Ligação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Mol Biol ; 430(13): 1912-1925, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29733858

RESUMO

RomA is a SET-domain containing protein lysine methyltransferase encoded by the Gram-negative bacterium Legionella pneumophila. It is exported into human host cells during infection and has been previously shown to methylate histone H3 at lysine 14 [Rolando et al. (2013), Cell Host Microbe, 13, 395-405]. Here, we investigated the substrate specificity of RomA on peptide arrays showing that it mainly recognizes a G-K-X-(PA) sequence embedded in a basic amino acid sequence context. Based on the specificity profile, we searched for possible additional RomA substrates in the human proteome and identified 34 novel peptide substrates. For nine of these, the corresponding full-length protein or protein domains could be cloned and purified. Using radioactive and antibody-based methylation assays, we showed that seven of them are methylated by RomA, four of them strongly, one moderately, and two weakly. Mutagenesis confirmed for the seven methylated proteins that methylation occurs at target lysine residues fitting to the specificity profile. Methylation of one novel substrate (AROS) was investigated in HEK293 cells overexpressing RomA and during infection with L. pneumophila. Methylation could be detected in both conditions, confirming that RomA methylates non-histone proteins in human cells. Our data show that the bacterial methyltransferase RomA methylates also human non-histone proteins suggesting a multifaceted role in the infection process.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/análise , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimologia , Lisina/metabolismo , Metilação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Processamento de Proteína Pós-Traducional , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA