Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Foods ; 12(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37835299

RESUMO

BACKGROUND: This study aimed to investigate the prevalences of some important antibiotic-resistance genes (ARGs) and foodborne bacterial pathogens in sweet samples collected from local markets in Iran. METHODS: Forty sweet samples were collected. Foodborne pathogens and ARGs were detected in the sweet samples by conventional and multiplex PCR assays using species-specific primers. RESULTS: Staphylococcus aureus, Cronobacter sakazakii, Shigella spp., Campylobacter jejuni, and Campylobacter coli were detected and identified in 47.5%, 20%, 45%, 5%, and 30% of the sweet samples, respectively. We found S. aureus and Shigella spp. were the most prevalent bacterial pathogens. S. aureus was found to be the most frequent pathogenic bacteria profiled in these samples. We also found a significant correlation between the presence of C. coli and Cr. sakazakii. We detected the blaSHV resistance gene in 97.5% of the sweet samples; however, blaTEM was detected in only one sample (2.5%). CONCLUSIONS: Regarding these results, we suggest preventive strategies such as implementing automation of food processing; monitoring the personal hygiene and health of food handlers, and testing regularly for antibiotic resistance in raw materials and products.

2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895054

RESUMO

Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking ß-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.


Assuntos
Clorofíceas , Glicerol , Glicerol/metabolismo , Espectrometria de Massas em Tandem , Clorofíceas/metabolismo , Fotossíntese , Estresse Salino
3.
BMC Biotechnol ; 23(1): 40, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723521

RESUMO

BACKGROUND: Cutaneotrichosporon oleaginosus is an oleaginous yeast that can produce up to 80% lipid per dry weight. Its high capacity for the biosynthesis of single cell oil makes it highly interesting for the production of engineered lipids or oleochemicals for industrial applications. However, the genetic toolbox for metabolic engineering of this non-conventional yeast has not yet been systematically expanded. Only three long endogenous promoter sequences have been used for heterologous gene expression, further three dominant and one auxotrophic marker have been established. RESULTS: In this study, the structure of putative endogenous promoter sequences was analyzed based on more than 280 highly expressed genes. The identified motifs of regulatory elements and translational initiation sites were used to annotate the four endogenous putative promoter sequences D9FADp, UBIp, PPIp, and 60Sp. The promoter sequences were tested in a construct regulating the known dominant marker hygromycin B phosphotransferase. The four newly described promoters and the previously established GAPDHp successfully initiated expression of the resistance gene and PPIp was selected for further marker development. The geneticin G418 resistance (aminoglycoside 3'-phosphotransferase, APH) and the nourseothricin resistance gene N-acetyl transferase (NAT) were tested for applicability in C. oleaginosus. Both markers showed high transformation efficiency, positive rate, and were compatible for combined use in a successive and simultaneous manner. CONCLUSIONS: The implementation of four endogenous promoters and one novel dominant resistance markers for C. oleaginosus opens up new opportunities for genetic engineering and strain development. In combination with recently developed methods for targeted genomic integration, the established toolbox allows a wide spectrum of new strategies for genetic and metabolic engineering of the industrially highly relevant yeast.


Assuntos
Basidiomycota , Regiões Promotoras Genéticas/genética , Resistência Microbiana a Medicamentos , Genômica , Engenharia Metabólica
4.
Mar Drugs ; 21(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623729

RESUMO

In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.


Assuntos
Proteômica , Transcriptoma , Perfilação da Expressão Gênica , Biotecnologia , Quitina
5.
Microbiologyopen ; 12(4): e1372, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37642486

RESUMO

Chitin is the second most abundant polysaccharide worldwide as part of arthropods' exoskeletons and fungal cell walls. Low concentrations in soils and sediments indicate rapid decomposition through chitinolytic organisms in terrestrial and aquatic ecosystems. The enacting enzymes, so-called chitinases, and their products, chitooligosaccharides, exhibit promising characteristics with applications ranging from crop protection to cosmetics, medical, textile, and wastewater industries. Exploring novel chitinolytic organisms is crucial to expand the enzymatical toolkit for biotechnological chitin utilization and to deepen our understanding of diverse catalytic mechanisms. In this study, we present two long-read sequencing-based genomes of highly similar Jeongeupia species, which have been screened, isolated, and biochemically characterized from chitin-amended soil samples. Through metabolic characterization, whole-genome alignments, and phylogenetic analysis, we could demonstrate how the investigated strains differ from the taxonomically closest strain Jeongeupia naejangsanensis BIO-TAS4-2T (DSM 24253). In silico analysis and sequence alignment revealed a multitude of highly conserved chitinolytic enzymes in the investigated Jeongeupia genomes. Based on these results, we suggest that the two strains represent a novel species within the genus of Jeongeupia, which may be useful for environmentally friendly N-acetylglucosamine production from crustacean shell or fungal biomass waste or as a crop protection agent.


Assuntos
Acetilglucosamina , Ecossistema , Filogenia , Mapeamento Cromossômico , Quitina
6.
Genes (Basel) ; 14(7)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37510222

RESUMO

Insertion sequence elements (ISE) are often found to be responsible for the collapse of production in synthetically engineered Escherichia coli. By the transposition of ISE into the open reading frame of the synthetic pathway, E. coli cells gain selection advantage over cells expressing the metabolic burdensome production genes. Here, we present the exact entry sites of insertion sequence (IS) families 3 and 5 within plasmids for l-cysteine production in evolved E. coli populations. Furthermore, we identified an uncommon occurrence of an 8-bp direct repeat of IS5 which is atypical for this particular family, potentially indicating a new IS5 target site.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli , Humanos , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Cisteína/genética , Sequência de Bases , Plasmídeos/genética
7.
Biotechnol Adv ; 67: 108210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460047

RESUMO

Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.


Assuntos
Cosméticos , Lipopeptídeos , Humanos , Lipopeptídeos/química , Bactérias , Engenharia Genética , Cosméticos/química , Preparações Farmacêuticas , Tensoativos/química
8.
Anal Bioanal Chem ; 415(18): 4615-4627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37389599

RESUMO

The potential of fungi for use as biotechnological factories in the production of a range of valuable metabolites, such as enzymes, terpenes, and volatile aroma compounds, is high. Unlike other microorganisms, fungi mostly secrete secondary metabolites into the culture medium, allowing for easy extraction and analysis. To date, the most commonly used technique in the analysis of volatile organic compounds (VOCs) is gas chromatography, which is time and labour consuming. We propose an alternative ambient screening method that provides rapid chemical information for characterising the VOCs of filamentous fungi in liquid culture using a commercially available ambient dielectric barrier discharge ionisation (DBDI) source connected to a quadrupole-Orbitrap mass spectrometer. The effects of method parameters on measured peak intensities of a series of 8 selected aroma standards were optimised with the best conditions being selected for sample analysis. The developed method was then deployed to the screening of VOCs from samples of 13 fungal strains in three different types of complex growth media showing clear differences in VOC profiles across the different media, enabling determination of best culturing conditions for each compound-strain combination. Our findings underline the applicability of ambient DBDI for the direct detection and comparison of aroma compounds produced by filamentous fungi in liquid culture.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Meios de Cultura/análise , Fungos
9.
J Agric Food Chem ; 71(22): 8540-8550, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227257

RESUMO

Single-cell oil (SCO) produced by oleaginous microorganisms is potentially a more land-efficient and sustainable alternative to vegetable oil. The cost of SCO production can be reduced by value-added co-products like squalene, a highly relevant compound for the food, cosmetic, and pharmaceutical industry. For the first time, squalene in the oleaginous yeast Cutaneotrichosporon oleaginosus was analyzed, reaching 172.95 ± 61.31 mg/100 g oil in a lab-scale bioreactor. Using the squalene monooxygenase inhibitor terbinafine, cellular squalene was significantly increased to 2169 ± 262 mg/100 g SCO, while the yeast remained highly oleaginous. Further, SCO from a 1000 L scale production was chemically refined. The squalene content in the deodorizer distillate (DD) was found to be higher than that in DD from typical vegetable oils. Overall, this study demonstrates squalene as a value-added compound in SCO from C. oleaginosus for application in food and cosmetics without the use of genetic modifications.


Assuntos
Fermentação , Alimentos , Esqualeno/química , Esqualeno/metabolismo , Óleos/química , Óleos/metabolismo , Oxigênio/metabolismo
10.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175663

RESUMO

BACKGROUND: Gastric cancer has been recognized as the second most probable cause of death in humans from cancer diseases around the world. Postbiotics, supernatant, and metabolites from probiotic microorganisms have recently been used widely to prevent and treat cancer diseases in humans, without any undesirable side effects. This study explores the antiproliferative and antitumor activities of the probiotic Saccharomyces cerevisiae var. boulardii supernatant (SBS) against AGS cancer cells, a human gastric adenocarcinoma cell line. METHODS: We evaluated cell growth inhibitory and mechanical properties of the cytoplasmic membrane and the downregulation of survivin and proinflammatory genes in AGS cells treated with SBS after 24 and 48 h. RESULTS: SBS significantly inhibits the AGS cell growth, and the concentrations with IC50 values after 24 and 48 h treatments are measured as 2266 and 1956 µg/mL, respectively. Regarding the AFM images and Young`s modulus analysis, SBS significantly induces morphological changes in the cytoplasmic membrane of the treated AGS cells. Expression of survivin, NFƙB, and IL-8 genes is significantly suppressed in AGS cells treated with SBS. CONCLUSIONS: Considering the antitumor activities of SBS on AGS cell line, it can be regarded as a prospective therapeutic and preventive strategy against human stomach cancer disease.


Assuntos
Probióticos , Saccharomyces boulardii , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Saccharomyces cerevisiae , Survivina/genética , Probióticos/farmacologia , Probióticos/metabolismo , Expressão Gênica , Membrana Celular/metabolismo , Linhagem Celular Tumoral
11.
Front Bioeng Biotechnol ; 11: 1130939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926689

RESUMO

Biosorption of metal ions by phototrophic microorganisms is regarded as a sustainable and alternative method for bioremediation and metal recovery. In this study, 12 cyanobacterial strains, including 7 terrestrial and 5 aquatic cyanobacteria, covering a broad phylogenetic diversity were investigated for their potential application in the enrichment of rare earth elements through biosorption. A screening for the maximum adsorption capacity of cerium, neodymium, terbium, and lanthanum was conducted in which Nostoc sp. 20.02 showed the highest adsorption capacity with 84.2-91.5 mg g-1. Additionally, Synechococcus elongatus UTEX 2973, Calothrix brevissima SAG 34.79, Desmonostoc muscorum 90.03, and Komarekiella sp. 89.12 were promising candidate strains, with maximum adsorption capacities of 69.5-83.4 mg g-1, 68.6-83.5 mg g-1, 44.7-70.6 mg g-1, and 47.2-67.1 mg g-1 respectively. Experiments with cerium on adsorption properties of the five highest metal adsorbing strains displayed fast adsorption kinetics and a strong influence of the pH value on metal uptake, with an optimum at pH 5 to 6. Studies on binding specificity with mixed-metal solutions strongly indicated an ion-exchange mechanism in which Na+, K+, Mg2+, and Ca2+ ions are replaced by other metal cations during the biosorption process. Depending on the cyanobacterial strain, FT-IR analysis indicated the involvement different functional groups like hydroxyl and carboxyl groups during the adsorption process. Overall, the application of cyanobacteria as biosorbent in bioremediation and recovery of rare earth elements is a promising method for the development of an industrial process and has to be further optimized and adjusted regarding metal-containing wastewater and adsorption efficiency by cyanobacterial biomass.

12.
PLoS Biol ; 21(3): e3002063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996247

RESUMO

The steady increase in human population and a rising standard of living heighten global demand for energy. Fossil fuels account for more than three-quarters of energy production, releasing enormous amounts of carbon dioxide (CO2) that drive climate change effects as well as contributing to severe air pollution in many countries. Hence, drastic reduction of CO2 emissions, especially from fossil fuels, is essential to tackle anthropogenic climate change. To reduce CO2 emissions and to cope with the ever-growing demand for energy, it is essential to develop renewable energy sources, of which biofuels will form an important contribution. In this Essay, liquid biofuels from first to fourth generation are discussed in detail alongside their industrial development and policy implications, with a focus on the transport sector as a complementary solution to other environmentally friendly technologies, such as electric cars.


Assuntos
Poluição do Ar , Biocombustíveis , Humanos , Biocombustíveis/análise , Dióxido de Carbono , Combustíveis Fósseis/análise , Mudança Climática
13.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768771

RESUMO

Shigella species are the main cause of bacillary diarrhoea or shigellosis in humans. These organisms are the inhabitants of the human intestinal tract; however, they are one of the main concerns in public health in both developed and developing countries. In this study, we reviewed and summarised the previous studies and recent advances in molecular mechanisms of pathogenesis of Shigella Dysenteriae and non-Dysenteriae species. Regarding the molecular mechanisms of pathogenesis and the presence of virulence factor encoding genes in Shigella strains, species of this bacteria are categorised into Dysenteriae and non-Dysenteriae clinical groups. Shigella species uses attachment, invasion, intracellular motility, toxin secretion and host cell interruption mechanisms, causing mild diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome diseases in humans through the expression of effector delivery systems, protein effectors, toxins, host cell immune system evasion and iron uptake genes. The investigation of these genes and molecular mechanisms can help us to develop and design new methods to detect and differentiate these organisms in food and clinical samples and determine appropriate strategies to prevent and treat the intestinal and extraintestinal infections caused by these enteric pathogens.


Assuntos
Colite , Disenteria Bacilar , Shigella , Humanos , Shigella dysenteriae/genética , Fatores de Virulência/genética
14.
Food Sci Nutr ; 11(1): 228-235, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655112

RESUMO

Escherichia coli serogroup O157 is the main causative agent of several intestinal and extra-intestinal foodborne diseases in humans through consumption of low-dose contaminated foods such as milk, beef, and vegetables. To date, studies regarding the quantitative prevalence of E. coli O157 in foods are so limited. Therefore, this study aimed to evaluate the quantitative prevalence rate of E. coli serogroup O157 in raw milk (n = 144), vegetable salad (n = 174), and minced beef samples (n = 108) using the real-time qPCR SYBR green melting curve method targeting the rfbA gene. First, we evaluated the method and found a sensitive and specific qPCR assay with 1 log of CFU/ml detection limit to detect E. coli O157 (Tm = 80.3 ± 0.1°C). About 2.77%, 10.18%, and 9.19% of raw milk, minced beef, and vegetable salad samples, respectively, were contaminated with E. coli O157. Minced beef and vegetable salad samples were significantly more contaminated than raw milk samples. Population average of E. coli O157 in raw milk, minced beef, and vegetable salad samples were 2.22 ± 0.57, 3.30 ± 0.40, and 1.65 ± 0.44 log CFU/ml or gr, respectively. Significantly higher levels of population of E. coli O157 were observed in minced beef samples. Minced beef can be regarded as the main food in the transmission of this foodborne pathogen. Routine quantitative rapid monitoring is strongly suggested to be carried out to prevent foodborne diseases caused by E. coli O157.

15.
Microb Cell Fact ; 22(1): 10, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642733

RESUMO

BACKGROUND: L-cysteine is an essential chemical building block in the pharmaceutical-, cosmetic-, food and agricultural sector. Conventionally, L-cysteine production relies on the conversion of keratinous biomass mediated by hydrochloric acid. Today, fermentative production based on recombinant E. coli, where L-cysteine production is streamlined and facilitated by synthetic plasmid constructs, is an alternative process at industrial scale. However, metabolic stress and the resulting production escape mechanisms in evolving populations are severely limiting factors during industrial biomanufacturing. We emulate high generation numbers typically reached in industrial fermentation processes with Escherichia coli harbouring L-cysteine production plasmid constructs. So far no genotypic and phenotypic alterations in early and late L-cysteine producing E. coli populations have been studied. RESULTS: In a comparative experimental design, the E. coli K12 production strain W3110 and the reduced genome strain MDS42, almost free of insertion sequences, were used as hosts. Data indicates that W3110 populations acquire growth fitness at the expense of L-cysteine productivity within 60 generations, while production in MDS42 populations remains stable. For the first time, the negative impact of predominantly insertion sequence family 3 and 5 transposases on L-cysteine production is reported, by combining differential transcriptome analysis with NGS based deep plasmid sequencing. Furthermore, metabolic clustering of differentially expressed genes supports the hypothesis, that metabolic stress induces rapid propagation of plasmid rearrangements, leading to reduced L-cysteine yields in evolving populations over industrial fermentation time scales. CONCLUSION: The results of this study implicate how selective deletion of insertion sequence families could be a new route for improving industrial L-cysteine or even general amino acid production using recombinant E. coli hosts. Instead of using minimal genome strains, a selective deletion of certain IS families could offer the benefits of adaptive laboratory evolution (ALE) while maintaining enhanced L-cysteine production stability.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Cisteína/metabolismo , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli K12/genética , Fermentação , Estresse Fisiológico , Engenharia Metabólica/métodos
16.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385513

RESUMO

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Assuntos
Hidroliases , Sequência de Aminoácidos , Hidroliases/química , Sítios de Ligação , Catálise
17.
Front Bioeng Biotechnol ; 11: 1299349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173874

RESUMO

The transformation of modern industries towards enhanced sustainability is facilitated by green technologies that rely extensively on rare earth elements (REEs) such as cerium (Ce), neodymium (Nd), terbium (Tb), and lanthanum (La). The occurrence of productive mining sites, e.g., is limited, and production is often costly and environmentally harmful. As a consequence of increased utilization, REEs enter our ecosystem as industrial process water or wastewater and become highly diluted. Once diluted, they can hardly be recovered by conventional techniques, but using cyanobacterial biomass in a biosorption-based process is a promising eco-friendly approach. Cyanobacteria can produce extracellular polymeric substances (EPS) that show high affinity to metal cations. However, the adsorption of REEs by EPS has not been part of extensive research. Thus, we evaluated the role of EPS in the biosorption of Ce, Nd, Tb, and La for three terrestrial, heterocystous cyanobacterial strains. We cultivated them under N-limited and non-limited conditions and extracted their EPS for compositional analyses. Subsequently, we investigated the metal uptake of a) the extracted EPS, b) the biomass extracted from EPS, and c) the intact biomass with EPS by comparing the amount of sorbed REEs. Maximum adsorption capacities for the tested REEs of extracted EPS were 123.9-138.2 mg g-1 for Komarekiella sp. 89.12, 133.1-137.4 mg g-1 for Desmonostoc muscorum 90.03, and 103.5-129.3 mg g-1 for Nostoc sp. 20.02. A comparison of extracted biomass with intact biomass showed that 16% (Komarekiella sp. 89.12), 28% (Desmonostoc muscorum 90.03), and 41% (Nostoc sp. 20.02) of REE adsorption was due to the biosorption of the extracellular EPS. The glucose- rich EPS (15%-43% relative concentration) of all three strains grown under nitrogen-limited conditions showed significantly higher biosorption rates for all REEs. We also found a significantly higher maximum adsorption capacity of all REEs for the extracted EPS compared to cells without EPS and untreated biomass, highlighting the important role of the EPS as a binding site for REEs in the biosorption process. EPS from cyanobacteria could thus be used as efficient biosorbents in future applications for REE recycling, e.g., industrial process water and wastewater streams.

18.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142393

RESUMO

Flaxseeds are typically consumed either as whole flaxseed, ground flaxseed, flaxseed oil, partially defatted flaxseed meal, or as a milk alternative. They are considered a rich source of vitamins, minerals, proteins and peptides, lipids, carbohydrates, lignans, and dietary fiber, which have shown hypolipidemic, antiatherogenic, anticholesterolemic, and anti-inflammatory property activity. Here, an in vitro batch culture model was used to investigate the influence of whole milled flaxseed and partially defatted milled flaxseed press cake on the gut microbiota and the liberation of flaxseed bioactives. Microbial communities were profiled using 16S rRNA gene-based high-throughput sequencing with targeted mass spectrometry measuring lignan, cyclolinopeptide, and bile acid content and HPLC for short-chain fatty acid profiles. Flaxseed supplementation decreased gut microbiota richness with Firmicutes, Proteobacteria, and Bacteroidetes becoming the predominant phyla. Secoisolariciresinol, enterodiol, and enterolactone were rapidly produced with acetic acid, butyric acid, and propionic acid being the predominant acids after 24 h of fermentation. The flaxseed press cake and whole flaxseed were equivalent in microbiota changes and functionality. However, press cake may be superior as a functional additive in a variety of foods in terms of consumer acceptance as it would be more resistant to oxidative changes.


Assuntos
Linho , Microbioma Gastrointestinal , Lignanas , Anti-Inflamatórios , Ácidos e Sais Biliares , Ácido Butírico , Fibras na Dieta/análise , Ácidos Graxos Voláteis , Linho/metabolismo , Humanos , Lignanas/química , Óleo de Semente do Linho , Metaboloma , Propionatos , RNA Ribossômico 16S/metabolismo , Vitaminas/análise
19.
Beilstein J Org Chem ; 18: 972-978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965858

RESUMO

Terpene synthases are responsible for the biosynthesis of terpenes, the largest family of natural products. Hydropyrene synthase generates hydropyrene and hydropyrenol as its main products along with two byproducts, isoelisabethatrienes A and B. Fascinatingly, a single active site mutation (M75L) diverts the product distribution towards isoelisabethatrienes A and B. In the current work, we study the competing pathways leading to these products using quantum chemical calculations in the gas phase. We show that there is a great thermodynamic preference for hydropyrene and hydropyrenol formation, and hence most likely in the synthesis of the isoelisabethatriene products kinetic control is at play.

20.
Front Bioeng Biotechnol ; 10: 885977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573232

RESUMO

In analogy to higher plants, eukaryotic microalgae are thought to be incapable of utilizing green light for growth, due to the "green gap" in the absorbance profiles of their photosynthetic pigments. This study demonstrates, that the marine chlorophyte Picochlorum sp. is able to grow efficiently under green light emitting diode (LED) illumination. Picochlorum sp. growth and pigment profiles under blue, red, green and white LED illumination (light intensity: 50-200 µmol m-2 s-1) in bottom-lightened shake flask cultures were evaluated. Green light-treated cultures showed a prolonged initial growth lag phase of one to 2 days, which was subsequently compensated to obtain comparable biomass yields to red and white light controls (approx. 0.8 gDW L-1). Interestingly, growth and final biomass yields of the green light-treated sample were higher than under blue light with equivalent illumination energies. Further, pigment analysis indicated, that during green light illumination, Picochlorum sp. formed unknown pigments (X1-X4). Pigment concentrations increased with illumination intensity and were most abundant during the exponential growth phase. Mass spectrometry and nuclear magnetic resonance data indicated, that pigments X1-X2 and X3-X4 are derivatives of chlorophyll b and a, which harbor C=C bonds in the phytol side chain similar to geranylgeranylated chlorophylls. Thus, for the first time, the natural accumulation of large pools (approx. 12 mg gDW -1) of chlorophyll intermediates with incomplete hydrogenation of their phytyl chains is demonstrated for algae under monochromatic green light (Peak λ 510 nm, full width at half maximum 91 nm). The ability to utilize green light offers competitive advantages for enhancing biomass production, particularly under conditions of dense cultures, long light pathways and high light intensity. Green light acclimation for an eukaryotic microalgae in conjunction with the formation of new aberrant geranylgeranylated chlorophylls and high efficiency of growth rates are novel for eukaryotic microalgae. Illumination with green light could enhance productivity in industrial processes and trigger the formation of new metabolites-thus, underlying mechanisms require further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA