Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gerontology ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565079

RESUMO

INTRODUCTION: Perturbation-based balance training is promising for fall prevention in older adults mimicking real-life fall situations at a person's stability thresholds to improve reactive balance. Hence, it can be associated with anxiety, but knowledge about the acceptability of perturbation-based balance training is scarce. METHOD: This is a secondary analysis of a randomized controlled trial comparing effects of two different perturbation-based balance training paradigms that aims to evaluate and compare the acceptability of those training paradigms in fall-prone older adults. Participants (74.9±5.7 years) who completed the training (6 weeks, 3x/week) on either a perturbation treadmill (PBTtreadmill: n=22) or unstable surfaces in the presence of perturbations (PBTstability: n=27) were surveyed on the acceptability of perturbation-based balance training using a 21-items questionnaire addressing seven domains (perceived effectiveness, tailoring, demand, safety, burden, devices, affective attitude), based on the Theoretical Framework of Acceptability and context-specific factors. Relative scores (% of absolute maximum) for single items and domains were calculated. RESULTS: Median domain scores of perceived effectiveness, tailoring, safety, devices, and affective attitude were all ≥70% for both paradigms. The highest scores were obtained for tailoring (both paradigms=100% [interquartile range 80-100%]). Domain scores of demand and burden were in the medium range (40-45%) for both paradigms. No significant differences between paradigms were found for any domain score. Two single items of safety differed significantly, with PBTtreadmill perceived as needing less support (p=.015) and leading less often to balance loss (p=.026) than PBTstability. CONCLUSION: Perturbation-based balance training conducted on a perturbation treadmill or on unstable surfaces is well accepted in this fall-prone older sample, even though it is conducted at individual stability thresholds. Tailoring may play a key role in achieving high levels of perceived effectiveness, appropriate levels of demand and burden, and high sense of safety. Perturbation-based balance training delivered on treadmills might be more appropriate for more anxious persons.

2.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506185

RESUMO

Muscle synergies as functional low-dimensional building blocks of the neuromotor system regulate the activation patterns of muscle groups in a modular structure during locomotion. The purpose of the current study was to explore how older adults organize locomotor muscle synergies to counteract unpredictable and predictable gait perturbations during the perturbed steps and the recovery steps. Sixty-three healthy older adults (71.2±5.2 years) participated in the study. Mediolateral and anteroposterior unpredictable and predictable perturbations during walking were introduced using a treadmill. Muscle synergies were extracted from the electromyographic activity of 13 lower limb muscles using Gaussian non-negative matrix factorization. The four basic synergies responsible for unperturbed walking (weight acceptance, propulsion, early swing and late swing) were preserved in all applied gait perturbations, yet their temporal recruitment and muscle contribution in each synergy were modified (P<0.05). These modifications were observed for up to four recovery steps and were more pronounced (P<0.05) following unpredictable perturbations. The recruitment of the four basic walking synergies in the perturbed and recovery gait cycles indicates a robust neuromotor control of locomotion by using activation patterns of a few and well-known muscle synergies with specific adjustments within the synergies. The selection of pre-existing muscle synergies while adjusting the time of their recruitment during challenging locomotor conditions may improve the effectiveness to deal with perturbations and promote the transfer of adaptation between different kinds of perturbations.


Assuntos
Marcha , Caminhada , Eletromiografia , Caminhada/fisiologia , Locomoção , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
3.
Gerontology ; 69(7): 910-922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921581

RESUMO

INTRODUCTION: There is increasing evidence that perturbation-based balance training (PBT) is highly effective in preventing falls at older age. Different PBT paradigms have been presented so far, yet a systematic comparison of PBT approaches with respect to feasibility and effectiveness is missing. Two different paradigms of PBT seem to be promising for clinical implementation: (1) technology-supported training on a perturbation treadmill (PBTtreadmill); (2) training of dynamic stability mechanisms in the presence of perturbations induced by unstable surfaces (PBTstability). This study aimed to compare both program's feasibility and effectiveness in fall-prone older adults. METHODS: In this three-armed randomized controlled trial, seventy-one older adults (74.9 ± 6.0 years) with a verified fall risk were randomly assigned into three groups: PBTtreadmill on a motorized treadmill, PBTstability using unstable conditions such as balance pads, and a passive control group (CG). In both intervention groups, participants conducted a 6-week intervention with 3 sessions per week. Effects were assessed in fall risk (Brief-BEST), balance ability (Stepping Threshold Test, center of pressure, limits of stability), leg strength capacity, functional performance (Timed Up and Go Test, Chair-Stand), gait (preferred walking speed), and fear of falling (Short FES-I). RESULTS: Fifty-one participants completed the study. Training adherence was 91% for PBTtreadmill and 87% for PBTstability, while no severe adverse events occurred. An analysis of covariance with an intention-to-treat approach revealed statistically significant group effects in favor of PBTstability in the Brief-BEST (p = 0.009, η2 = 0.131) and the limits of stability (p = 0.020, η2 = 0.110) and in favor of PBTtreadmill in the Stepping Threshold Test (p < 0.001, η2 = 0.395). The other outcomes demonstrated no significant group effects. CONCLUSION: Both training paradigms demonstrated high feasibility and were effective in improving specific motor performances in the fall-prone population and these effects were task specific. PBTtreadmill showed higher improvements in reactive balance, which might have been promoted by the unpredictable nature of the included perturbations and the similarity to the tested surface perturbation paradigm. PBTstability showed more wide-ranging effects on balance ability. Consequently, both paradigms improved fall risk-associated measures. The advantages of both formats should be evaluated in light of individual needs and preferences. Larger studies are needed to investigate the effects of these paradigms on real-life fall rates.


Assuntos
Terapia por Exercício , Equilíbrio Postural , Humanos , Idoso , Terapia por Exercício/métodos , Medo , Estudos de Tempo e Movimento , Marcha
4.
PLoS One ; 17(6): e0269417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658057

RESUMO

There is increasing evidence that including sex as a biological variable is of crucial importance to promote rigorous, repeatable and reproducible science. In spite of this, the body of literature that accounts for the sex of participants in human locomotion studies is small and often produces controversial results. Here, we investigated the modular organization of muscle activation patterns for human locomotion using the concept of muscle synergies with a double purpose: i) uncover possible sex-specific characteristics of motor control and ii) assess whether these are maintained in older age. We recorded electromyographic activities from 13 ipsilateral muscles of the lower limb in young and older adults of both sexes walking (young and old) and running (young) on a treadmill. The data set obtained from the 215 participants was elaborated through non-negative matrix factorization to extract the time-independent (i.e., motor modules) and time-dependent (i.e., motor primitives) coefficients of muscle synergies. We found sparse sex-specific modulations of motor control. Motor modules showed a different contribution of hip extensors, knee extensors and foot dorsiflexors in various synergies. Motor primitives were wider (i.e., lasted longer) in males in the propulsion synergy for walking (but only in young and not in older adults) and in the weight acceptance synergy for running. Moreover, the complexity of motor primitives was similar in younger adults of both sexes, but lower in older females as compared to older males. In essence, our results revealed the existence of small but defined sex-specific differences in the way humans control locomotion and that these are not entirely maintained in older age.


Assuntos
Músculo Esquelético , Caminhada , Idoso , Eletromiografia , Teste de Esforço , Feminino , Humanos , Locomoção/fisiologia , Extremidade Inferior/fisiologia , Masculino , Músculo Esquelético/fisiologia , Caminhada/fisiologia
5.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062633

RESUMO

Daily life activities often require humans to perform locomotion in challenging scenarios. In this context, this study aimed at investigating the effects induced by anterior-posterior (AP) and medio-lateral (ML) perturbations on walking. Through this aim, the experimental protocol involved 12 participants who performed three tasks on a treadmill consisting of one unperturbed and two perturbed walking tests. Inertial measurement units were used to gather lower limb kinematics. Parameters related to joint angles, as the range of motion (ROM) and its variability (CoV), as well as the inter-joint coordination in terms of continuous relative phase (CRP) were computed. The AP perturbation seemed to be more challenging causing differences with respect to normal walking in both the variability of the ROM and the CRP amplitude and variability. As ML, only the ankle showed different behavior in terms of joint angle and CRP variability. In both tasks, a shortening of the stance was found. The findings should be considered when implementing perturbed rehabilitative protocols for falling reduction.


Assuntos
Marcha , Caminhada , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Adulto Jovem
6.
Front Sports Act Living ; 3: 715392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708198

RESUMO

Introduction: Measurement of reactive balance is critical for fall prevention but is severely underrepresented in the clinical setting due to the lack of valid assessments. The Stepping Threshold Test (STT) is a newly developed instrumented test for reactive balance on a movable platform, however, it has not yet been validated for fall-prone older adults. Furthermore, different schemes of observer-based evaluation seem possible. The aim of this study was to investigate validity with respect to fall risk, interpretability, and feasibility of the STT using two different evaluation strategies. Methods: This study involved 71 fall-prone older adults (aged ≥ 65) who underwent progressively increasing perturbations in four directions for the STT. Single and multiple-step thresholds for each perturbation direction were determined via two observer-based evaluation schemes, which are the 1) consideration of all steps (all-step-count evaluation, ACE) and 2) consideration of those steps that extend the base of support in the direction of perturbation (direction-sensitive evaluation, DSE). Established balance measures including global (Brief Balance Evaluations Systems Test, BriefBEST), proactive (Timed Up and Go, TUG), and static balance (8-level balance scale, 8LBS), as well as fear of falling (Short Falls Efficacy Scale-International, FES-I) and fall occurrence in the past year, served as reference measurements. Results: The sum scores of STT correlated moderately with the BriefBEST (ACE: r = 0.413; DSE: r = 0.388) and TUG (ACE: r = -0.379; DSE: r = -0.435) and low with the 8LBS (ACE: r = 0.173; DSE: r = 0.246) and Short FES-I (ACE: r = -0.108; DSE: r = -0.104). The sum scores did not distinguish between fallers and non-fallers. No floor/ceiling effects occurred for the STT sum score, but these effects occurred for specific STT thresholds for both ACE (mean floor effect = 13.04%, SD = 19.35%; mean ceiling effect = 4.29%, SD = 7.75%) and DSE (mean floor effect = 7.86%, SD = 15.23%; mean ceiling effect = 21.07%, SD = 26.08). No severe adverse events occurred. Discussion: Correlations between the STT and other balance tests were in the expected magnitude, indicating convergent validity. However, the STT could not distinguish between fallers and non-fallers, referring to a need for further studies and prospective surveys of falls to validate the STT. Current results did not allow a definitive judgment on the advantage of using ACE or DSE. Study results represented a step toward a reactive balance assessment application in a clinical setting.

7.
iScience ; 23(1): 100796, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31962235

RESUMO

Is the control of movement less stable when we walk or run in challenging settings? Intuitively, one might answer that it is, given that challenging locomotion externally (e.g., rough terrain) or internally (e.g., age-related impairments) makes our movements more unstable. Here, we investigated how young and old humans synergistically activate muscles during locomotion when different perturbation levels are introduced. Of these control signals, called muscle synergies, we analyzed the local stability and the complexity (or irregularity) over time. Surprisingly, we found that perturbations force the central nervous system to produce muscle activation patterns that are less unstable and less complex. These outcomes show that robust locomotion control in challenging settings is achieved by producing less complex control signals that are more stable over time, whereas easier tasks allow for more unstable and irregular control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA