Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439185

RESUMO

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

2.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29110037

RESUMO

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Linfócitos/efeitos dos fármacos , Mutagênicos/toxicidade , Linhagem Celular , Humanos , Testes para Micronúcleos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Mutagenesis ; 31(2): 171-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26362870

RESUMO

4-Nitroquinoline 1-oxide (4NQO) is used as a positive control in various genotoxicity assays because of its known mutagenic and carcinogenic properties. The chemical is converted into 4-hydroxyaminoquinoline 1-oxide and gives rise to three main DNA adducts, N-(deoxyguanosin-8-yl)-4AQO, 3-(desoxyguanosin-N (2)-yl)-4AQO and 3-(deoxyadenosin-N (6)-yl)-4AQO. This study was designed to assess the shape of the dose-response curve at low concentrations of 4NQO in three human lymphoblastoid cell lines, MCL-5, AHH-1 and TK6 as well as the mouse lymphoma L5178Y cell line in vitro. Chromosomal damage was investigated using the in vitro micronucleus assay, while further gene mutation and DNA damage studies were carried out using the hypoxanthine-guanine phosphoribosyltransferase forward mutation and comet assays. 4NQO showed little to no significant increases in micronucleus induction in the human lymphoblastoid cell lines, even up to 55±5% toxicity. A dose-response relationship could only be observed in the mouse lymphoma cell line L5178Y after 4NQO treatment, even at concentrations with no reduction in cell viability. Further significant increases in gene mutation and DNA damage induction were observed. Hence, 4NQO is a more effective point mutagen than clastogen, and its suitability as a positive control for genotoxicity testing has to be evaluated for every individual assay.


Assuntos
4-Nitroquinolina-1-Óxido/toxicidade , Carcinógenos/toxicidade , Mutagênicos/toxicidade , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hipoxantina Fosforribosiltransferase/genética , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutação/efeitos dos fármacos
4.
Mutagenesis ; 29(3): 155-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705543

RESUMO

Micronucleus (MN) induction is an established cytogenetic end point for evaluating structural and numerical chromosomal alterations in genotoxicity testing. A semi-automated scoring protocol for the assessment of MN preparations from human cell lines and a 3D skin cell model has been developed and validated. Following exposure to a range of test agents, slides were stained with 4'-6-diamidino-2-phenylindole (DAPI) and scanned by use of the MicroNuc module of metafer 4, after the development of a modified classifier for selecting MN in binucleate cells. A common difficulty observed with automated systems is an artefactual output of high false positives, in the case of the metafer system this is mainly due to the loss of cytoplasmic boundaries during slide preparation. Slide quality is paramount to obtain accurate results. We show here that to avoid elevated artefactual-positive MN outputs, diffuse cell density and low-intensity nuclear staining are critical. Comparisons between visual (Giemsa stained) and automated (DAPI stained) MN frequencies and dose-response curves were highly correlated (R (2) = 0.70 for hydrogen peroxide, R (2) = 0.98 for menadione, R (2) = 0.99 for mitomycin C, R (2) = 0.89 for potassium bromate and R (2) = 0.68 for quantum dots), indicating the system is adequate to produce biologically relevant and reliable results. Metafer offers many advantages over conventional scoring including increased output and statistical power, and reduced scoring subjectivity, labour and costs. Further, the metafer system is easily adaptable for use with a range of different cells, both suspension and adherent human cell lines. Awareness of the points raised here reduces the automatic positive errors flagged and drastically reduces slide scoring time, making metafer an ideal candidate for genotoxic biomonitoring and population studies and regulatory genotoxic testing.


Assuntos
Testes para Micronúcleos/métodos , Técnicas de Cultura de Células , Linhagem Celular , Quebra Cromossômica/efeitos dos fármacos , Corantes Fluorescentes , Humanos , Indóis , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos/estatística & dados numéricos , Mutagênicos/toxicidade
5.
Toxicol Sci ; 140(1): 94-102, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24675086

RESUMO

The p53 tumor suppressor protein plays an essential role in cellular integrity and inactivation of the TP53 gene by mutation is the most frequent alteration in human cancer. As loss of p53 function is associated with increased genetic instability, it is important in genotoxicity testing to explore the role of p53 competency. In vitro model systems for genotoxicity testing are sometimes prone to misleading positive results; some of this loss of predictivity may be caused by p53 inactivation in some cell models. To explore whether impaired p53 function plays a role in mutation sensitivity, TK6 cells (p53 competent) and NH32 cells (p53 deficient) were treated with two known genotoxicants, mitomycin C (MMC) and cytosine arabinoside (araC). Chromosomal damage was assessed in the low dose region by an automated micronucleus system and p53 activity was investigated by gene and protein expression analysis. Cell cycle progression studies were also assessed. Low levels of micronucleus and p53 induction were observed in TK6 cells treated with MMC. On the other hand, higher levels of micronucleus and p53 induction were shown in TK6 cells treated with araC and a G1/S arrest was observed after araC treatment. p53 deficient NH32 cells showed an increased sensitivity of micronucleus (MN) induction after araC treatment compared with TK6 cells and less of an active G1/S phase checkpoint. Thus, impaired p53 function sensitizes cells to genotoxicants and plays a central role in the DNA damage response. This data has clear importance for safety assessment of genotoxicity and shows how crucial p53 competence is.


Assuntos
Citarabina/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mitomicina/toxicidade , Mutagênicos/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Supressora de Tumor p53/genética
6.
Mutat Res ; 648(1-2): 9-14, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18992265

RESUMO

The alkylating agents methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) have non-linear dose-response curves, with a no-observed effect level (NOEL) and a lowest observed effect level (LOEL) for both gross chromosomal damage and mutagenicity. However, the biological mechanism responsible for the NOEL has yet to be identified. A strong candidate is DNA repair as it may be able to efficiently remove alkyl adducts at low doses resulting in a NOEL, but at higher doses fails to fully remove all lesions due to saturation of enzymatic activity resulting in a LOEL and subsequent linear increases in mutagenicity. We therefore assessed the transcriptional status of N-methylpurine-DNA glycoslase (MPG) and O(6)-methylguanine DNA methyltransferase (MGMT), which represent the first line of defence following exposure to alkylating agents through the respective enzymatic removal of N7-alkylG and O(6)-alkylG. The relative MPG and MGMT gene expression profiles were assessed by real-time RT-PCR following exposure to 0-2 microg/ml MMS for 1-24h. MPG expression remained fairly steady, but in contrast significant up-regulation of MGMT was observed when cells were treated with 0.5 and 1.0 microg/ml MMS for 4h (2.5- and 6.5-fold increases respectively). These doses lie within the NOEL for MMS mutagenicity (LOEL is 1.25 microg/ml), thus this boost in MGMT expression at low doses may be responsible for efficiently repairing O(6)methylG lesions and creating the non-linear response for mutations. However, as the LOEL for MMS clastogenicity is 0.85 microg/ml, O(6)-alkylG is unlikely to be responsible for the clastogenicity observed at these concentrations. Consequently, at low doses N7-methylG is possibly the predominant cause of MMS clastogenicity, while O(6)-methylG is more likely to be responsible for MMS mutagenicity, with MGMT up-regulation playing a key role in removal of O(6)-alkylG lesions before they are fixed as permanent point mutations, resulting in non-linear dose-responses for direct acting genotoxins.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Metanossulfonato de Metila/toxicidade , Proteínas Supressoras de Tumor/genética , Regulação para Cima/efeitos dos fármacos , Células Cultivadas , Adutos de DNA/análise , DNA Glicosilases/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes p53/efeitos dos fármacos , Humanos , Nível de Efeito Adverso não Observado , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA