Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453984

RESUMO

Acipenseriformes (sturgeons and paddlefishes) are of substantial conservation concern, and development of genomic resources for these species is difficult due to past whole genome duplication. Development of disomic markers for polyploid organisms can be challenging due to difficulty in resolving alleles at a single locus from those among duplicated loci. In this study, we detail the development of disomic markers for the endangered pallid sturgeon (Scaphirhynchus albus) found in North America. One of the strategies for pallid sturgeon conservation is to stock U.S. rivers with offspring of pure pallid sturgeon, but introgression with the sympatric shovelnose sturgeon (S. platorynchus) threatens pallid sturgeon genetic integrity. Currently, 19 microsatellite loci are used to differentiate between both species and their hybrids, but the markers are insufficient to robustly identify backcrosses. We performed double digest restriction site-associated DNA sequencing (ddRADseq) on shovelnose sturgeon haploid gynogens to produce a reduced-representation genomic reference. Contiguous sequences that were heterozygous within a haploid individual were flagged as potentially encompassing multiple loci. Approximately 60 individuals of each species from two management units were sequenced, and reads were mapped to the haploid reference to identify single nucleotide polymorphisms (SNPs) at individual loci. The final data set contained 11,082 microhaplotyped loci which offer at least an order of magnitude greater resolution for species discrimination than the current panel of 19 microsatellites. These markers will be used to examine a larger sample of Scaphirhynchus individuals throughout their ranges to determine the extent and trajectory of hybridization.

2.
J Fish Biol ; 96(2): 486-495, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830302

RESUMO

We produced pallid sturgeon Scaphirhynchus albus embryos at five pre-hatch developmental stages and isolated and quantified genomic DNA from four of the stages using four commercial DNA isolation kits. Genomic DNA prepared using the kit that produced the largest yields and concentrations were used for microsatellite DNA analyses of 10-20 embryos at each of the five developmental stages. We attempted to genotype the hatchery-produced embryos at 19 microsatellite loci and confirmed reliable genotyping by comparing the microsatellite genotypes to those of known parents. Embryos at stages 5 and 8 did not produce reliable genotyping while those at stages 14, 24 and 33 did. We used the same DNA isolation method on 262 wild-caught acipenseriform embryos collected from the lower Yellowstone River. A total of 200 of the wild embryos were successfully identified to stages 8 to 34 and the rest could not be staged. Using a combination of single nucleotide polymorphism and microsatellite markers, 249 of the wild-caught embryos were genetically identified as paddlefish Polyodon spathula, five were identified as shovelnose sturgeon Scaphirhynchus platorynchus and eight failed to amplify. None were identified as pallid sturgeon. This study demonstrates that early-stage wild-spawned acipenseriform embryos can be genetically identified less than 24 h post-spawn. This methodology will be useful for recovery efforts for endangered pallid sturgeon and can be applied to other acipenseriform species.


Assuntos
Espécies em Perigo de Extinção , Peixes/embriologia , Peixes/genética , Animais , Conservação dos Recursos Naturais , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA