Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2005): 20230630, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37583321

RESUMO

Organisms living in mountains contend with extreme climatic conditions, including short growing seasons and long winters with extensive snow cover. Anthropogenic climate change is driving unprecedented, rapid warming of montane regions across the globe, resulting in reduced winter snowpack. Loss of snow as a thermal buffer may have serious consequences for animals overwintering in soil, yet little is known about how variability in snowpack acts as a selective agent in montane ecosystems. Here, we examine genomic variation in California populations of the leaf beetle Chrysomela aeneicollis, an emerging natural model system for understanding how organisms respond to climate change. We used a genotype-environment association approach to identify genomic signatures of local adaptation to microclimate in populations from three montane regions with variable snowpack and a coastal region with no snow. We found that both winter-associated environmental variation and geographical distance contribute to overall genomic variation across the landscape. We identified non-synonymous variation in novel candidate loci associated with cytoskeletal function, ion transport and membrane stability, cellular processes associated with cold tolerance in other insects. These findings provide intriguing evidence that variation in snowpack imposes selective gradients in montane ecosystems.


Assuntos
Besouros , Salix , Animais , Ecossistema , Besouros/genética , Adaptação Fisiológica , Mudança Climática , Genômica , Estações do Ano
2.
G3 (Bethesda) ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37178174

RESUMO

The leaf beetle Chrysomela aeneicollis has a broad geographic range across Western North America but is restricted to cool habitats at high elevations along the west coast. Central California populations occur only at high altitudes (2,700-3,500 m) where they are limited by reduced oxygen supply and recent drought conditions that are associated with climate change. Here, we report a chromosome-scale genome assembly alongside a complete mitochondrial genome and characterize differences among mitochondrial genomes along a latitudinal gradient over which beetles show substantial population structure and adaptation to fluctuating temperatures. Our scaffolded genome assembly consists of 21 linkage groups; one of which we identified as the X chromosome based on female/male whole genome sequencing coverage and orthology with Tribolium castaneum. We identified repetitive sequences in the genome and found them to be broadly distributed across all linkage groups. Using a reference transcriptome, we annotated a total of 12,586 protein-coding genes. We also describe differences in putative secondary structures of mitochondrial RNA molecules, which may generate functional differences important in adaptation to harsh abiotic conditions. We document substitutions at mitochondrial tRNA molecules and substitutions and insertions in the 16S rRNA region that could affect intermolecular interactions with products from the nuclear genome. This first chromosome-level reference genome will enable genomic research in this important model organism for understanding the biological impacts of climate change on montane insects.


Assuntos
Besouros , Genoma Mitocondrial , Salix , Feminino , Masculino , Animais , Besouros/genética , DNA Mitocondrial/genética , Salix/genética , RNA Ribossômico 16S , Cromossomos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37210884

RESUMO

During winter, many organisms conserve resources by entering dormancy, suppressing metabolism and biosynthesis. The transition out of winter dormancy to summer activity requires a quick reversal of this suppression, in order to exploit now-favorable environmental conditions. To date, mechanisms by which winter climate variation affects this transition remains unelucidated. Here we experimentally manipulated snow cover for naturally overwintering montane leaf beetles (Chrysomela aeneicollis), and profiled changes in gene expression during the transition out of dormancy in spring. Upon emergence, beetles up-regulate transcripts associated with digestion and nutrient acquisition and down regulate those associated with lipid metabolism, suggesting a shift away from utilizing stored lipid and towards digestion of carbohydrate-rich host plant tissue. Development of digestive capacity is followed by up-regulation of transcripts associated with reproduction; a transition that occurs earlier in females than males. Snow manipulation strongly affected the ground thermal regime and correspondingly gene expression profiles, with beetles showing a delayed up-regulation of reproduction in the dry compared to snowy plots. This suggests that winter conditions can alter the timing and prioritization of processes during emergence from dormancy, potentially magnifying the effects of declining snow cover in the Sierra's and other snowy mountains.


Assuntos
Besouros , Transcriptoma , Feminino , Masculino , Animais , Besouros/genética , Reprodução , Estações do Ano , Digestão
4.
Genome Biol Evol ; 12(5): 494-505, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176296

RESUMO

The Drosophila obscura species group shows dramatic variation in karyotype, including transitions among sex chromosomes. Members of the affinis and pseudoobscura subgroups contain a neo-X chromosome (a fusion of the X with an autosome), and ancestral Y genes have become autosomal in species harboring the neo-X. Detailed analysis of species in the pseudoobscura subgroup revealed that ancestral Y genes became autosomal through a translocation to the small dot chromosome. Here, we show that the Y-dot translocation is restricted to the pseudoobscura subgroup, and translocation of ancestral Y genes in the affinis subgroup likely followed a different route. We find that most ancestral Y genes have translocated to unique autosomal or X-linked locations in different taxa of the affinis subgroup, and we propose a dynamic model of sex chromosome formation and turnover in the obscura species group. Our results suggest that Y genes can find unique paths to escape unfavorable genomic environments that form after sex chromosome-autosome fusions.


Assuntos
Evolução Biológica , Drosophila/genética , Genes Ligados ao Cromossomo X , Genoma , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Masculino , Filogenia
5.
G3 (Bethesda) ; 10(3): 891-897, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31969429

RESUMO

The Drosophila obscura species group is one of the most studied clades of Drosophila and harbors multiple distinct karyotypes. Here we present a de novo genome assembly and annotation of D. bifasciata, a species which represents an important subgroup for which no high-quality chromosome-level genome assembly currently exists. We combined long-read sequencing (Nanopore) and Hi-C scaffolding to achieve a highly contiguous genome assembly approximately 193 Mb in size, with repetitive elements constituting 30.1% of the total length. Drosophila bifasciata harbors four large metacentric chromosomes and the small dot, and our assembly contains each chromosome in a single scaffold, including the highly repetitive pericentromeres, which were largely composed of Jockey and Gypsy transposable elements. We annotated a total of 12,821 protein-coding genes and comparisons of synteny with D. athabasca orthologs show that the large metacentric pericentromeric regions of multiple chromosomes are conserved between these species. Importantly, Muller A (X chromosome) was found to be metacentric in D. bifasciata and the pericentromeric region appears homologous to the pericentromeric region of the fused Muller A-AD (XL and XR) of pseudoobscura/affinis subgroup species. Our finding suggests a metacentric ancestral X fused to a telocentric Muller D and created the large neo-X (Muller A-AD) chromosome ∼15 MYA. We also confirm the fusion of Muller C and D in D. bifasciata and show that it likely involved a centromere-centromere fusion.


Assuntos
Cromossomos de Insetos , Drosophila/genética , Genoma de Inseto , Cromossomo X , Animais , Feminino , Variação Genética , Cariótipo
6.
Nat Ecol Evol ; 3(11): 1587-1597, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666742

RESUMO

Widespread loss of genes on the Y is considered a hallmark of sex chromosome differentiation. Here we show that the initial stages of Y evolution are driven by massive amplification of distinct classes of genes. The neo-Y chromosome of Drosophila miranda initially contained about 3,000 protein-coding genes, but has gained over 3,200 genes since its formation about 1.5 million years ago primarily by tandem amplification of protein-coding genes ancestrally present on this chromosome. We show that distinct evolutionary processes may account for this drastic increase in gene number on the Y. Testis-specific and dosage-sensitive genes appear to have amplified on the Y to increase male fitness. A distinct class of meiosis-related multi-copy Y genes independently co-amplified on the X, and their expansion is probably driven by conflicts over segregation. Co-amplified X/Y genes are highly expressed in testis, enriched for meiosis and RNA interference functions and are frequently targeted by small RNAs in testis. This suggests that their amplification is driven by X versus Y antagonism for increased transmission, where sex chromosome drive suppression is probably mediated by sequence homology between the suppressor and distorter through the RNA interference mechanism. Thus, our analysis suggests that newly emerged sex chromosomes are a battleground for sexual and meiotic conflict.


Assuntos
Drosophila , Amplificação de Genes , Animais , Masculino , Meiose , Cromossomos Sexuais , Cromossomo Y
7.
Elife ; 82019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31524597

RESUMO

Centromeres are the basic unit for chromosome inheritance, but their evolutionary dynamics is poorly understood. We generate high-quality reference genomes for multiple Drosophila obscura group species to reconstruct karyotype evolution. All chromosomes in this lineage were ancestrally telocentric and the creation of metacentric chromosomes in some species was driven by de novo seeding of new centromeres at ancestrally gene-rich regions, independently of chromosomal rearrangements. The emergence of centromeres resulted in a drastic size increase due to repeat accumulation, and dozens of genes previously located in euchromatin are now embedded in pericentromeric heterochromatin. Metacentric chromosomes secondarily became telocentric in the pseudoobscura subgroup through centromere repositioning and a pericentric inversion. The former (peri)centric sequences left behind shrunk dramatically in size after their inactivation, yet contain remnants of their evolutionary past, including increased repeat-content and heterochromatic environment. Centromere movements are accompanied by rapid turnover of the major satellite DNA detected in (peri)centromeric regions.


Assuntos
Centrômero/metabolismo , Cromossomos de Insetos/metabolismo , Drosophila/genética , Cariótipo , Animais , Evolução Molecular
8.
Mol Ecol ; 27(8): 2077-2094, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29087025

RESUMO

Bark and ambrosia beetles are highly specialized weevils (Curculionidae) that have established diverse symbioses with fungi, most often from the order Ophiostomatales (Ascomycota, Sordariomycetes). The two types of beetles are distinguished by their feeding habits and intimacy of interactions with their symbiotic fungi. The tree tissue diet of bark beetles is facilitated by fungi, while ambrosia beetles feed solely on fungi that they farm. The farming life history strategy requires domestication of a fungus, which the beetles consume as their sole food source. Ambrosia beetles in the subfamily Platypodinae originated in the mid-Cretaceous (119-88 Ma) and are the oldest known group of farming insects. However, attempts to resolve phylogenetic relationships and the timing of domestication events for fungal cultivars have been largely inconclusive. We sequenced the genomes of 12 ambrosia beetle fungal cultivars and bark beetle associates, including the devastating laurel wilt pathogen, Raffaelea lauricola, to estimate a robust phylogeny of the Ophiostomatales. We find evidence for contemporaneous diversification of the beetles and their associated fungi, followed by three independent domestication events of the ambrosia fungi genus Raffaelea. We estimate the first domestication of an Ophiostomatales fungus occurred ~86 Ma, 25 million years earlier than prior estimates and in close agreement with the estimated age of farming in the Platypodinae (96 Ma). Comparisons of the timing of fungal domestication events with the timing of beetle radiations support the hypothesis that the first large beetle radiations may have spread domesticated "ambrosia" fungi to other fungi-associated beetle groups, perhaps facilitating the evolution of new farming lineages.


Assuntos
Ascomicetos/genética , Genoma de Inseto/genética , Simbiose/genética , Gorgulhos/microbiologia , Animais , Ascomicetos/patogenicidade , Besouros/genética , Besouros/microbiologia , Domesticação , Filogenia
9.
Nat Commun ; 8(1): 1593, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150608

RESUMO

Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.


Assuntos
Cromossomos de Insetos/genética , Besouros/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Evolução Molecular , Feminino , Especiação Genética , Haplótipos , Hibridização Genética , Infertilidade Masculina , Masculino , Pinus/parasitologia , Isolamento Reprodutivo
10.
Mol Ecol ; 26(21): 6071-6084, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29116665

RESUMO

Chromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North America to reveal the extent of the phylogeographic differences between Y haplotypes compared to autosomal and X-linked loci. Clustering and geneflow analyses revealed three distinct Y haplogroups geographically positioned within and on either side of the Great Basin Desert. Despite close geographic proximity between populations on the boundaries of each Y haplogroup, there was extremely low Y haplogroup mixing among populations, and gene flow on the autosomes was reduced across Y haplogroup boundaries. These results are consistent with a previous study suggesting that independent degradation of a recently evolved neo-Y chromosome in previously isolated populations causes male sterility or inviability among Y haplotype lineages. Phylogeographic results supported historic contraction of MPB into three separate Pleistocene glacial refugia followed by postglacial range expansion and secondary contact. Distinct sets of SNPs were statistically associated with environmental data among the most genetically distinct sets of geographic populations. This finding suggests that the process of adaptation to local climatic conditions is influenced by population genetic structure, with evidence for largely independent evolution in the most genetically isolated Y haplogroup.


Assuntos
Adaptação Biológica , Genética Populacional , Isolamento Reprodutivo , Gorgulhos/genética , Animais , Clima , Feminino , Fluxo Gênico , Haplótipos , Masculino , América do Norte , Filogeografia , Polimorfismo de Nucleotídeo Único , Refúgio de Vida Selvagem , Cromossomo X , Cromossomo Y
11.
Mol Biol Evol ; 34(8): 1912-1923, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431021

RESUMO

The Drosophila athabasca species complex contains three recently diverged, prezygotically isolated semispecies (Western-Northern, Eastern-A, and Eastern-B) that are distributed across North America and share zones of sympatry. Inferences based on a handful of loci suggest that this complex might be an ideal system for studying the genetics of incipient speciation and the evolution of prezygotic isolating mechanisms, but patterns of differentiation have not been characterized systematically. Here, we assembled a draft genome for D. athabasca and analyze whole-genome re-sequencing data for 28 individuals from across the species range to characterize genome-wide patterns of diversity and population differentiation among semispecies. Patterns of differentiation on the X-chromosome vs. autosomes vary, with the X-chromosome showing better phylogenetic resolution and increased levels of between semispecies divergence. Despite low levels of overall differentiation and a lack of phylogenetic resolution of the autosomes for the most closely related semispecies, individuals do exhibit distinct genetic clustering. Demographic analyses provide some support for a model of isolation with migration within D. athabasca, with divergence times <20 kya. The young divergence times of the semispecies of D. athabasca, together with strong levels of sexual isolation, makes them a promising system for studying the evolution of prezygotic isolation and speciation.


Assuntos
Drosophila/genética , Animais , Evolução Biológica , Especiação Genética , Variação Genética/genética , Genoma , Genoma de Inseto/genética , América do Norte , Filogenia , Isolamento Reprodutivo , Simpatria/genética , Cromossomo X/genética
12.
Ecol Evol ; 5(21): 5109-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640686

RESUMO

The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect-microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient-poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle-fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle-fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine-scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non-natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non-natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non-natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle-fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.

13.
Microb Ecol ; 68(4): 859-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25004995

RESUMO

Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle-fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect's geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle's flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle-fungus interaction is discussed.


Assuntos
Basidiomycota/fisiologia , Ophiostomatales/fisiologia , Gorgulhos/microbiologia , Animais , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Tamanho Corporal , Colúmbia Britânica , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Noroeste dos Estados Unidos , Ophiostomatales/genética , Ophiostomatales/isolamento & purificação , Estações do Ano , Análise de Sequência de DNA , Sudoeste dos Estados Unidos , Especificidade da Espécie , Gorgulhos/genética , Gorgulhos/fisiologia
14.
Evolution ; 65(4): 961-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21108639

RESUMO

Studies of postzygotic isolation often involve well-differentiated taxa that show a consistent level of incompatibility, thereby limiting our understanding of the initial stages and development of reproductive barriers. Dendroctonus ponderosae provides an informative system because recent evidence suggests that distant populations produce hybrids with reproductive incompatibilities. Dendroctonus ponderosae shows an isolation-by-distance gene flow pattern allowing us to characterize the evolution of postzygotic isolation (e.g., hybrid inviability, hybrid sterility) by crossing populations along a continuum of geographic/genetic divergence. We found little evidence of hybrid inviability among these crosses. However, crosses between geographically distant populations produced sterile males (consistent with Haldane's rule). This effect was not consistent with the fixation of mutations in an isolation-by-distance pattern, but instead is spatially localized. These reproductive barriers are uncorrelated with a reduction in gene flow suggesting their recent development. Crosses between geographically proximal populations bounding the transition from compatibility to hybrid male sterility showed evidence of unidirectional reduction in hybrid male fecundity. Our study describes significant postzygotic isolation occurring across a narrow and molecularly cryptic geographic zone between the states of Oregon and Idaho. This study provides a view of the early stages of postzygotic isolation in a geographically widespread species.


Assuntos
Besouros/genética , Besouros/fisiologia , Especiação Genética , Genética Populacional , Hibridização Genética , Animais , Cruzamentos Genéticos , Fluxo Gênico/genética , Aptidão Genética/genética , Idaho , Masculino , Oregon , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA