Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Oncogene ; 33(31): 4077-88, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-24037528

RESUMO

The microRNA-200 (miR-200) family has a critical role in regulating epithelial-mesenchymal transition and cancer cell invasion through inhibition of the E-cadherin transcriptional repressors ZEB1 and ZEB2. Recent studies have indicated that the miR-200 family may exert their effects at distinct stages in the metastatic process, with an overall effect of enhancing metastasis in a syngeneic mouse breast cancer model. We find in a xenograft orthotopic model of breast cancer metastasis that ectopic expression of members of the miR-200b/200c/429, but not the miR-141/200a, functional groups limits tumour cell invasion and metastasis. Despite modulation of the ZEB1-E-cadherin axis, restoration of ZEB1 in miR-200b-expressing cells was not able to alter metastatic potential suggesting that other targets contribute to this process. Instead, we found that miR-200b repressed several actin-associated genes, with the knockdown of the ezrin-radixin-moesin family member moesin alone phenocopying the repression of cell invasion by miR-200b. Moesin was verified to be directly targeted by miR-200b, and restoration of moesin in miR-200b-expressing cells was sufficient to alleviate metastatic repression. In breast cancer cell lines and patient samples, the expression of moesin significantly inversely correlated with miR-200 expression, and high levels of moesin were associated with poor relapse-free survival. These findings highlight the context-dependent effects of miR-200 in breast cancer metastasis and demonstrate the existence of a moesin-dependent pathway, distinct from the ZEB1-E-cadherin axis, through which miR-200 can regulate tumour cell plasticity and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais , Camundongos , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
2.
Oncogene ; 32(24): 2992-3000, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22797073

RESUMO

Loss of p53 function is a critical event during tumorigenesis, with half of all cancers harboring mutations within the TP53 gene. Such events frequently result in the expression of a mutated p53 protein with gain-of-function properties that drive invasion and metastasis. Here, we show that the expression of miR-155 was up-regulated by mutant p53 to drive invasion. The miR-155 host gene was directly repressed by p63, providing the molecular basis for mutant p53 to drive miR-155 expression. Significant overlap was observed between miR-155 targets and the molecular profile of mutant p53-expressing breast tumors in vivo. A search for cancer-related target genes of miR-155 revealed ZNF652, a novel zinc-finger transcriptional repressor. ZNF652 directly repressed key drivers of invasion and metastasis, such as TGFB1, TGFB2, TGFBR2, EGFR, SMAD2 and VIM. Furthermore, silencing of ZNF652 in epithelial cancer cell lines promoted invasion into matrigel. Importantly, loss of ZNF652 expression in primary breast tumors was significantly correlated with increased local invasion and defined a population of breast cancer patients with metastatic tumors. Collectively, these findings suggest that miR-155 targeted therapies may provide an attractive approach to treat mutant p53-expressing tumors.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Invasividade Neoplásica , Transdução de Sinais/genética
3.
Cell Mol Life Sci ; 66(10): 1682-99, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19153653

RESUMO

For a tumour cell to metastasize it must successfully negotiate a number of events, requiring a series of coordinated changes in the expression of many genes. MicroRNAs are small non-coding RNA molecules that post-transcriptionally control gene expression. As microRNAs are now recognised as master regulators of gene networks and play important roles in tumourigenesis, it is no surprise that microRNAs have recently been demonstrated to have central roles during metastasis. Recent work has also demonstrated critical roles for microRNAs in epithelial-mesenchymal transition, a phenotypic change underlain by altered gene expression patterns that is believed to mirror events in metastatic progression. These findings offer new potential for improved prognostics through expression profiling and may represent novel molecular treatment targets for future therapy. In this review, we summarise the multistep processes of metastasis and epithelial-mesenchymal transition and describe the recent discoveries of microRNAs that participate in controlling these processes.


Assuntos
Epitélio/metabolismo , Regulação Neoplásica da Expressão Gênica , Mesoderma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/genética , Animais , Diferenciação Celular , Humanos , Mesoderma/citologia , Metástase Neoplásica/diagnóstico
4.
Oncogene ; 26(31): 4523-30, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17260016

RESUMO

The forkhead associated (FHA) domain-containing protein Smad nuclear interacting protein 1 (SNIP1) has multiple cellular functions, including the ability to interact with DNA-binding transcription factors and transcriptional coactivators. Moreover, we have demonstrated previously that SNIP1 regulates cyclin D1 expression and promoter activity. Here, we identify a new function for SNIP1 as a regulator of ATR checkpoint kinase-dependent pathways in human U-2 OS osteosarcoma cells: SNIP1 is required for p53 induction in response to ultraviolet light treatment and selectively regulates the phosphorylation of known ATR target proteins, including p53, Chk1 and the histone variant H2AX. These activities are independent of its ability to regulate cyclin D1 expression. Significantly, SNIP1 is also required for ATR-dependent functions of the human p14(ARF) tumour suppressor, including its ability to modulate the activity of the RelA(p65) NF-kappaB subunit. This, together with its other described functions, suggests that SNIP1 could have an important role during tumorigenesis and cancer therapy.


Assuntos
Proteínas de Ciclo Celular/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Osteossarcoma/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
5.
Cell Mol Life Sci ; 60(7): 1376-93, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12943226

RESUMO

Oxygen depravation in mammals leads to the transcriptional induction of a host of target genes to metabolically adapt to this deficiency, including erythropoietin and vascular endothelial growth factor. This response is primarily mediated by the hypoxia-inducible factors (HIFs) which are members of the basic-helix-loop-helix/Per-ARNT-Sim (bHLH/PAS) transcription factor family. The HIFs are primarily regulated via a two-step mechanism of HIF post-translational modification, increasing both protein stability and transactivation capacity. This review aims to summarise our current understanding of these processes, and discuss the important role of the HIFs in the pathophysiology of many human diseases.


Assuntos
Hipóxia Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequências Hélice-Alça-Hélice , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA