Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Hazard Mater ; 470: 134153, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593658

RESUMO

This study systematically examines the roles of positive goethite on the retention and release of negative plastic nanoparticles (PSNPs) with different surface functional groups (Blank, -COOH, and -NH2). It provides the first evidence for the dual roles of goethite coatings on colloid transport; e.g., increased transport caused by surface morphology modification or decreased transport due to increased surface roughness and charge heterogeneity. Although previous work has shown that goethite-coated sand increases the retention of negative colloids, this work demonstrates that collector surface roughness can also reduce the retention of PSNPs due to increased interaction energy profiles. Nonmonotonic retention of all the different functionalized PSNPs was observed in goethite-coated rough sand, and the magnitude of variations was contingent on the PSNP functionalization, the solution ionic strength (IS), and the goethite coating. The release of PSNPs with IS decrease (phase I) and pH increase (phase II) varied significantly due to differences in energy barriers to detachment, e.g., release in phase I was inhibited in both goethite-coated sands, whereas release in phase II was enhanced in coated smooth sand but completely inhibited in rough sand. The findings of this study provide innovative insight into transport mechanisms for colloidal and colloid-associated contaminants.

2.
Chemosphere ; 339: 139604, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482317

RESUMO

Black phosphorus nanosheets/nanoparticles (BPNs) are widely applied in many fields. However, the transport of BPNs in the subsurface still has not yet been reported and there is increasing concern about potential adverse impacts on ecosystems. Roles of median grain size and surface roughness, BPN concentration, and solution chemistries (pH, ionic strength, and cation types) on the retention and release of BPNs in column experiments were therefore investigated. The mobility of BPNs significantly increased with increasing grain size and decreasing surface roughness due to their influence on the mass transfer rate, number of deposition sites and retention capacity, and straining processes. Transport of BPNs was enhanced with an increase in pH and a decrease in ionic strength because of surface deprotonation and stronger repulsion that tends to reduce aggregation. The BPN transport was significantly sensitive to ionic strength, compared with other engineered nanoparticles. Additionally, charge heterogeneity and cation-bridging played a critical role in the retention of BPNs in the presence of divalent cations. Higher input concentrations increased the retention of BPNs, probably because collisions, aggregation at pore throat locations, and hydrodynamic bridging were more pronounced. Small fractions of BPNs can be released under decreasing IS and increasing pH due to the expansion of the electrical double layer and increased repulsion at convex roughness locations. A mathematical model that includes provisions for advective dispersive transport and time-dependent retention with blocking or ripening terms well described the retention and release of BPNs. These findings provide fundamental information that helps to understand the transport of BPNs in the subsurface environments.


Assuntos
Nanopartículas , Fósforo , Porosidade , Ecossistema , Concentração Osmolar , Cátions
3.
J Hazard Mater ; 454: 131482, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119570

RESUMO

The aggregation attachment efficiency (α) is the fraction of particle-particle collisions resulting in aggregation. Despite significant research, α predictions have not accounted for the full complexity of systems due to constraints imposed by particle types, dispersed matter, water chemistry, quantification methods, and modeling. Experimental α values are often case-specific, and simplified systems are used to rule out complexity. To address these challenges, statistical analysis was performed on α databases to identify gaps in current knowledge, and machine learning (ML) was used to predict α under various particle types and conditions. Moreover, text analytics was employed to support knowledge from statistics and ML, as well as gain insight into the ideas communicated by current literature. Most studies investigated α in mono-particle systems, but binary or higher systems require more investigation. Furthermore, our work highlights that numerous variables, interactions, and mechanisms influence α behavior, making its investigation complex and difficult for both experiments and modeling. Consequently, future research should incorporate more particle types, shapes, coatings, and surface heterogeneities, and aim to address overlooked variables and conditions. Therefore, building a comprehensive α database can enable the development of more accurate empirical models for prediction.

4.
Water Res ; 229: 119429, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459891

RESUMO

Colloidal particles can attach to surfaces during transport, but the attachment depends on particle size, hydrodynamics, solid and water chemistry, and particulate matter. The attachment is quantified in filtration theory by measuring attachment or sticking efficiency (Alpha). A comprehensive Alpha database (2538 records) was built from experiments in the literature and used to develop a machine learning (ML) model to predict Alpha. The training (r-squared: 0.86) was performed using two random forests capable of handling missing data. A holdout dataset was used to validate the training (r-squared: 0.98), and the variable importance was explored for training and validation. Finally, an additional validation dataset was built from quartz crystal microbalance experiments using surface-modified polystyrene, poly (methyl methacrylate), and polyethylene. The experiments were performed in the absence or presence of humic acid. Full database regression (r-squared: 0.90) predicted Alpha for the additional validation with an r-squared of 0.23. Nevertheless, when the original database and the additional validation dataset were combined into a new database, both the training (r-squared: 0.95) and validation (r-squared: 0.70) increased. The developed ML model provides a data-driven prediction of Alpha over a big database and evaluates the significance of 22 input variables.


Assuntos
Aprendizado de Máquina , Material Particulado , Tamanho da Partícula , Bases de Dados Factuais , Técnicas de Microbalança de Cristal de Quartzo
5.
Water Res ; 221: 118717, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749921

RESUMO

The presence and/or coating of natural colloids (e.g., clays and metal oxides or hydroxides) on collector surfaces has frequently been demonstrated to enhance the retention of engineered colloids that are negatively charged due to favorable electrostatic interactions. However, this work demonstrates that the presence of natural clay coating can lead to reduced or nonmonotonic retention of micro- and nanoplastics (MNPs). Column experiments were carried out to systematically investigate the transport of MNPs with different sizes in relatively smooth and rough sands that had various clay coating fractions. These coating fractions on the collector were found to significantly influence MNP retention in a complex manner that changed with the colloid size and the roughness properties of the sand. This observation was attributed to the impact of clay coatings on the roughness and morphology properties of collector surfaces that were dominant over surface charge. Scanning electron microscopy and interaction energy calculations on surfaces with pillars or valleys indicate that mechanisms that contributed to MNP retention changed with the colloid size. In particular, retention of nanosized plastics was mainly controlled by interactions on convex/concave locations that changed with the solution chemistry, whereas microsized plastics were also strongly influenced by the applied hydrodynamic torque and straining processes. Additionally, the significant sensitivity of MNP retention under a low-level ionic strength also reflects the importance of roughness and charge heterogeneities. These observations are important for investigating the mechanisms of colloid transport in natural systems that ubiquitously exhibit clay coating on their surfaces.


Assuntos
Coloides , Microplásticos , Argila , Coloides/química , Tamanho da Partícula , Porosidade
6.
Environ Sci Technol ; 56(15): 10668-10680, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731699

RESUMO

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is typically used to quantify surface interactions between engineered nanoparticles (ENPs), soil nanoparticles (SNPs), and/or porous media, which are used to assess environmental risk and fate of ENPs. This study investigates the co-transport behavior of functionalized multiwalled carbon nanotubes (MWCNTs) with positively (goethite nanoparticles, GNPs) and negatively (bentonite nanoparticles, BNPs) charged SNPs in quartz sand (QS). The presence of BNPs increased the transport of MWCNTs, but GNPs inhibited the transport of MWCNTs. In addition, we, for the first time, observed that the transport of negatively (BNPs) and positively (GNPs) charged SNPs was facilitated by the presence of MWCNTs. Traditional mechanisms associated with competitive blocking, heteroaggregation, and classic DLVO calculations cannot explain such phenomena. Direct examination using batch experiments and Fourier transform infrared (FTIR) spectroscopy, asymmetric flow field flow fractionation (AF4) coupled to UV and inductively coupled plasma mass spectrometry (AF4-UV-ICP-MS), and molecular dynamics (MD) simulations demonstrated that MWCNTs-BNPs or MWCNT-GNPs complexes or aggregates can be formed during co-transport. Non-DLVO interactions (e.g., H-bonding and Lewis acid-base interaction) helped to explain observed MWCNT deposition, associations between MWCNTs and both SNPs (positively or negatively), and co-transport. This research sheds novel insight into the transport of MWCNTs and SNPs in porous media and suggests that (i) mutual effects between colloids (e.g., heteroaggregation, co-transport, and competitive blocking) need to be considered in natural soil; and (ii) non-DLVO interactions should be comprehensively considered when evaluating the environmental risk and fate of ENPs.


Assuntos
Nanopartículas , Nanotubos de Carbono , Coloides , Nanopartículas/química , Nanotubos de Carbono/química , Porosidade , Solo
7.
J Colloid Interface Sci ; 610: 982-993, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34876261

RESUMO

HYPOTHESIS: Analytical expressions for calculating Hamaker constant (HC) and van der Waals (VDW) energy/force for interaction of a particle with a solid water interface has been reported for over eighty years. This work further developed novel analytical expressions and numerical approaches for determining HC and VDW interaction energy/force for the particle approaching and penetrating air-water interface (AWI), respectively. METHODS: The expressions of HC and VDW interaction energy/force before penetrating were developed through analysis of the variation in free energy of the interaction system with bringing the particle from infinity to the vicinity of the AWI. The surface element integration (SEI) technique was modified to calculate VDW energy/force after penetrating. FINDINGS: We explain why repulsive VDW energy exists inhibiting the particle from approaching the AWI. We found very significant VDW repulsion for a particle at a concave AWI after penetration, which can even exceed the capillary force and cause strong retention in water films on a solid surface and at air-water-solid interface line. The methods and findings of this work are critical to quantification and understanding of a variety of engineered processes such as particle manipulation (e.g., bubble flotation, Pickering emulsion, and particle laden interfaces).


Assuntos
Água , Emulsões
8.
Soil Use Manag ; 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711026

RESUMO

Colloidal contaminants and pathogens are widely distributed in soil, whose tiny sizes and distinct surface properties render unique environmental behaviours. Because of aging, colloids can undergo dramatic changes in their physicochemical properties once in the soil environment, thus leading to diverse or even unpredictable environmental behaviour and fate. Herein, we provide a state-of-art review of colloid aging mechanisms and characteristics and implications for risk mitigation. First, we review aging-induced formation of colloidal contaminants and aging-associated changes. We place a special focus on emerging nanoplastic (NP) contaminants and associated physical, chemical, and biological aging processes in soil environments. Second, we assess aging and survival features of colloidal pathogens, especially viruses. Viruses in soils may survive from several days to months, or even several years in groundwater, depending on their rates of inactivation and the reversibility of attachment. Furthermore, we identify implications for risk mitigation based on aging mechanisms. Hotspots of (photo)chemical aging of NPs, including plastic gauzes at construction sites and randomly discarded plastic waste in rural areas, are identified as area requiring greater research attention. For COVID-19, we suggest taking greater care in regions where viruses are persist for long periods, such as cold climate regions. Soil amendment with quicklime (CaO) may act as an effective means for pathogen disinfection. Future risk mitigation of colloidal contaminants and pathogens relies on a better understanding of aging mechanisms and more sophisticated models accurately depicting processes in real soil environments.

9.
J Hydrol (Amst) ; 594: 1-125720, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34675445

RESUMO

Drywells (DWs) and infiltration basins (IBs) are widely used as managed aquifer recharge (MAR) devices to capture stormwater runoff and recharge groundwater. However, no published research has compared the performance of these two engineered systems under shared conditions. Numerical experiments were conducted on an idealized 2D-axisymmetric domain using the HYDRUS (2D/3D) software to systematically study the performance of a circular IB design (diameter and area) and partially penetrating DW (38 m length with water table > 60 m). The effects of subsurface heterogeneity on infiltration, recharge, and storage from the DW and IB under constant head conditions were investigated. The mean cumulative infiltration (µI) and recharge (µR) volumes increased, and the arrival time of recharge decreased with the IB area. Values of µI were higher for a 70 m diameter IB than an DW, whereas the value of µR was higher for a DW after 1-year of a constant head simulation under selected subsurface heterogeneity conditions. A comparison between mean µI, µR, and mean vadose zone storage (µS) values for all DW and IB stochastic simulations (70 for each MAR scenario) under steady-state conditions demonstrated that five DWs can replace a 70 m diameter IB to achieve significantly higher infiltration and recharge over 20 years of operation. Additional numerical experiments were conducted to study the influence of a shallow clay layer by considering an IB, DW, and a DW integrated into an IB. The presence of such a low permeable layer delayed groundwater recharge from an IB. In contrast, a DW can penetrate tight clay layers and release water below them and facilitate rapid infiltration and recharge. The potential benefits of a DW compared to an IB include a smaller footprint, the potential for pre-treatments to remove contaminants, less evaporation, less mobilization of in-situ contaminants, and potentially lower maintenance costs. Besides, this study demonstrates that combining both IB and DW helps to get the best out of both MAR techniques.

10.
Water Res ; 197: 117040, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774462

RESUMO

Many arid and semi-arid regions of the world face challenges in maintaining the water quantity and quality needs of growing populations. A drywell is an engineered vadose zone infiltration device widely used for stormwater capture and managed aquifer recharge. To our knowledge, no prior studies have quantitatively examined virus transport from a drywell, especially in the presence of subsurface heterogeneity. Axisymmetric numerical experiments were conducted to systematically study virus fate from a drywell for various virus removal and subsurface heterogeneity scenarios under steady-state flow conditions from a constant head reservoir. Subsurface domains were homogeneous or had stochastic heterogeneity with selected standard deviation (σ) of lognormal distribution in saturated hydraulic conductivity and horizontal (X) and vertical (Z) correlation lengths. Low levels of virus concentration tailing can occur even at a separation distance of 22 m from the bottom of the drywell, and 6-log10 virus removal was not achieved when a small detachment rate (kd1=1 × 10⁻5 min⁻¹) is present in a homogeneous domain. Improved virus removal was achieved at a depth of 22 m in the presence of horizontal lenses (e.g., X=10 m, Z=0.1 m, σ=1) that enhanced the lateral movement and distribution of the virus. In contrast, faster downward movement of the virus with an early arrival time at a depth of 22 m occurred when considering a vertical correlation in permeability (X=1 m, Z=2 m, σ=1). Therefore, the general assumption of a 1.5-12 m separation distance to protect water quality may not be adequate in some instances, and site-specific microbial risk assessment is essential to minimize risk. Microbial water quality can potentially be improved by using an in situ soil treatment with iron oxides to increase irreversible attachment and solid-phase inactivation.


Assuntos
Água Subterrânea , Solo
11.
mSphere ; 6(1)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597174

RESUMO

Many viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV), have a structure consisting of spikes protruding from an underlying spherical surface. Research in biological and colloidal sciences has revealed secrets of why spikes exist on virus surfaces. Specifically, the spikes favor virus attachment on surfaces via receptor-specific interactions (RSIs), mediate the membrane fusion, and determine or change viral tropism. The spikes also facilitate viruses to approach surfaces before attachment and subsequently escape back to the environment if RSIs do not occur (i.e., easy come and easy go). Therefore, virus spikes create the paradox of having a large capacity for binding with cells (high infectivity) and meanwhile great mobility in the environment. Such structure-function relationships have important implications for the fabrication of virus-like particles and analogous colloids (e.g., hedgehog- and raspberry-like particles) for applications such as the development of antiviral vaccines and drug delivery.


Assuntos
COVID-19/transmissão , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , HIV/metabolismo , HIV/patogenicidade , Infecções por HIV/transmissão , Humanos , Proteínas Virais/metabolismo , Tropismo Viral/fisiologia , Internalização do Vírus
12.
Environ Pollut ; 276: 116661, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592438

RESUMO

Natural soils have frequently been considered to decrease the mobility of engineered nanoparticles (NPs) in comparison to quartz sand due to the presence of colloids that provide additional retention sites. In contrast, this study demonstrates that the transport and release of silver nanoparticles (AgNPs) in sandy clay loam and loamy sand soils were enhanced in the presence of soil colloids that altered soil grain surface roughness. In particular, we found that the retention of AgNPs in purified soils (colloid-free and acid-treated) was more pronounced than in raw (untreated) soils or soils treated to remove organic matter (H2O2 or 600 °C treated). Chemical analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy demonstrated that the grain surfaces of raw and organic matter-removed soils were abundant with metal oxides and colloids compared to purified soil. Column transport and release experimental results, SEM images, and interaction energy calculations revealed that a significant amount of concave locations on purified soils hindered AgNP release by diffusion or ionic strength (IS) reduction due to deep primary energy minima. Conversely, AgNPs that were retained in soils in the presence of soil colloids were more susceptible to release under IS reduction because the primary minimum was shallow on the tops of convex locations created by attached soil colloids. Additionally, a considerable fraction of retained AgNPs in raw soil was released after cation exchange followed by IS reduction, while no release occurred for purified soil under the same conditions. The AgNP release was highly associated with soil colloids and co-transport of AgNPs and soil colloids was observed. Our work is the first to show that the presence of soil colloids can inhibit deposition and facilitate the release and co-transport of NPs in soil by alteration of the soil grain surface morphology and shallow primary minimum interactions.


Assuntos
Nanopartículas Metálicas , Prata , Coloides , Peróxido de Hidrogênio , Prata/análise , Solo
13.
Langmuir ; 37(4): 1501-1510, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470105

RESUMO

Colloid aggregation and retention in the presence of macromolecular coatings (e.g., adsorbed polymers, surfactants, proteins, biological exudates, and humic materials) have previously been correlated with electric double layer interactions or repulsive steric interactions, but the underlying causes are not fully resolved. An interaction energy model that accounts for double layer, van der Waals, Born, and steric interactions as well as nanoscale roughness and charge heterogeneity on both surfaces was extended, and theoretical calculations were conducted to address this gap in knowledge. Macromolecular coatings may produce steric interactions in the model, but non-uniform or incomplete surface coverage may also create compressible nanoscale roughness with a charge that is different from the underlying surface. Model results reveal that compressible nanoscale roughness reduces the energy barrier height and the magnitude of the primary minimum at separation distances exterior to the adsorbed organic layer. The depth of the primary minimum initially alters (e.g., increases or decreases) at separation distances smaller than the adsorbed organic coating because of a decrease in the compressible roughness height and an increase in the roughness fraction. However, further decreases in the separation distance create strong steric repulsion that dominates the interaction energy profile and limits the colloid approach distance. Consequently, adsorbed organic coatings on colloids can create shallow primary minimum interactions adjacent to organic coatings that can explain enhanced stability and limited amounts of aggregation and retention that have commonly been observed. The approach outlined in this manuscript provides an improved tool that can be used to design adsorbed organic coatings for specific colloid applications or interpret experimental observations.

14.
J Hazard Mater ; 407: 124874, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33373966

RESUMO

The concentration of nonionic surfactants like Triton X-100 (TX100) can influence the transport and fate of emerging contaminants (e.g., carbon nanotubes) in porous media, but limited research has previously addressed this issue. This study investigates the co-transport of functionalized multi-walled carbon nanotubes (MWCNTs) and various concentrations of TX100 in saturated quartz sand (QS). Batch experiments and molecular dynamics simulations were conducted to investigate the interactions between TX100 and MWCNTs. Results indicated that the concentration ratio of MWCNTs and TX100 strongly influences the dispersion of MWCNTs and interaction forces between MWCNTs and QS during the transport. Breakthrough curves of MWCNTs and TX100 and retention profiles of MWCNTs were determined and simulated in column studies. MWCNTs strongly enhanced the retention of TX100 in QS due to the high affinity of TX100 for MWCNTs. Conversely, the concentration of TX100 had a non-monotonic impact on MWCNT retention. The maximum transport of MWCNTs in the QS occurred at an input concentration of TX100 that was lower than the critical micelle concentration. This suggests that the relative importance of factors influencing MWCNTs changed with TX100 sorption. Results from interaction energy calculations and modeling of competitive blocking indicate that the predictive ability of interaction energy calculations and colloid filtration theory may be lost because TX100 mainly altered intermolecular forces between the MWCNT and porous media. This study provides new insights into the co-transport of surfactants and MWCNTs in porous media, which can be useful for environmental applications and risk management.

15.
J Hydrol (Amst) ; 5832020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33364636

RESUMO

Drywells are widely used as managed aquifer recharge devices to capture stormwater runoff and recharge groundwater, but little research has examined the role of subsurface heterogeneity in hydraulic properties on drywell recharge efficiency. Numerical experiments were therefore conducted on a 2D-axisymmetric domain using the HYDRUS (2D/3D) software to systematically study the influence of various homogenous soil types and subsurface heterogeneity on recharge from drywells under constant head conditions. The mean cumulative infiltration (µI) and recharge (µR) volumes increased with an increase in the saturated hydraulic conductivity (Ks ) for various homogeneous soils. Subsurface heterogeneity was described by generating ten stochastic realizations of soil hydraulic properties with selected standard deviation (σ), and horizontal (X) and vertical (Z) correlation lengths. After 365 days, values of µI, µR, and the radius of the recharge area increased with σ and X but decreased with Z. The value of µR was always smaller for a homogeneous than a heterogeneous domain. This indicates that recharge for a heterogeneous profile cannot be estimated with an equivalent homogeneous profile. The value of µR was always smaller than µI and correlations were highly non-linear due to vadose zone storage. Knowledge of only infiltration volume can, therefore, lead to misinterpretation of recharge efficiency, especially at earlier times. The arrival time of the wetting front at the bottom boundary (60 m) ranged from 21-317 days, with earlier times occurring for increasing σ and Z. The corresponding first arrival location can be 0.1-44 m away from the bottom releasing point of a drywell in the horizontal direction, with greater distances occurring for increasing σ and X. This knowledge is important to accurately assess drywell recharged performance, water quantity, and water quality.

16.
Water Res ; 183: 116068, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32619803

RESUMO

Saturated column experiments were conducted to systematically examine the influence of hydration on the detachment of nano- and micro-sized latex colloids (35 nm and 1 µm, respectively) from sand. The colloids were attached on the sand in primary minima (PM) using high ionic strength (IS) NaCl solutions. The PM were predicted to be shallower and located farther from sand surfaces with increasing IS due to the hydration force. Consequently, a greater amount of colloid detachment occurred in deionized water when the colloids were initially deposited at a higher IS. Atomic force microscopy (AFM) examinations showed that both nanoscale protruding asperities and large wedge-like valleys existed on the sand surface. The influence of these surface features on the interaction energies/forces was modeled by approximating the roughness as cosinoidal waves and two intersecting half planes, respectively. The PM were deep and attachment was irreversible at concave regions for all ISs, even if the hydration force was included. Conversely, colloids were weakly attached at protruding asperities due to a reduced PM depth, and thus were responsible for the detachment upon IS reduction. The AFM examinations confirmed that the adhesive forces were enhanced and reduced (or even completely eliminated) at concave and convex locations of sand surfaces, respectively. These results have important implications for surface cleaning and prediction of the transport and fate of hazardous colloids and colloid-associated contaminants in subsurface environments.


Assuntos
Coloides , Dióxido de Silício , Microscopia de Força Atômica , Concentração Osmolar , Porosidade , Propriedades de Superfície
17.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591383

RESUMO

Many studies have examined the role that conjugation plays in disseminating antibiotic resistance genes in bacteria. However, relatively little research has quantitively examined and modeled the dynamics of conjugation under growing and nongrowing conditions beyond a couple of hours. We therefore examined growing and nongrowing cultures of Escherichia coli over a 24-h period to understand the dynamics of bacterial conjugation in the presence and absence of antibiotics with pUUH239.2, an IncFII plasmid containing multiantibiotic- and metal-resistant genes. Our data indicate that conjugation occurs after E. coli cells divide and before they have transitioned to a nongrowing phase. The result is that there is only a small window of opportunity for E. coli to conjugate with pUUH239.2 under both growing and nongrowing conditions. Only a very small percentage of the donor cells likely are capable of even undergoing conjugation, and not all transconjugants can become donor cells due to molecular regulatory controls and not being in the correct growth phase. Once a growing culture enters stationary phase, the number of capable donor cells decreases rapidly and conjugation slows to produce a plateau. Published models did not provide accurate descriptions of conjugation under nongrowing conditions. We present here a modified modeling approach that accurately describes observed conjugation behavior under growing and nongrowing conditions.IMPORTANCE There has been growing interest in horizontal gene transfer of antibiotic resistance plasmids as the antibiotic resistance crisis has worsened over the years. Most studies examining conjugation of bacterial plasmids focus on growing cultures of bacteria for short periods, but in the environment, most bacteria grow episodically and at much lower rates than in the laboratory. We examined conjugation of an IncFII antibiotic resistance plasmid in E. coli under growing and nongrowing conditions to understand the dynamics of conjugation under which the plasmid is transferred. We found that conjugation occurs in a narrow time frame when E. coli is transitioning from a growing to nongrowing phase and that the conjugation plateau develops because of a lack of capable donor cells in growing cultures. From an environmental aspect, our results suggest that episodic growth in nutrient-depleted environments could result in more conjugation than sustained growth in a nutrient rich environment.


Assuntos
Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli K12/genética , Plasmídeos/fisiologia , Antibacterianos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Plasmídeos/genética
18.
Environ Pollut ; 260: 114068, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32041081

RESUMO

Our understanding of colloidal biochar (CB) transport and release is largely unknown in environments with transient chemical conditions, e.g., ionic strength (IS), pH, and especially humic acid (HA). In this study, column experiments were conducted to investigate CB transport and retention in the presence and absence of HA, and CB release under transient IS and pH conditions in saturated sand. Step reductions in solution IS from 25 to 0.01 mM produced significant release peaks of CB due to a reduction in the depth of the primary minima on rough surfaces with small energy barriers. In contrast, step increases of solution pH from 4 to 10 only slightly increased CB release presumably due to the strong buffering capacity of CB. The CB retention was diminished by HA during the deposition phase. However, the release of CB with transients in IS and pH was not influenced much when deposition occurred in the presence of HA. These observations indicate that HA increased the energy barrier during deposition but did not have a large influence on the depth of the interacting minimum during transient release. Potential explanations for these effects of HA on CB retention and transient release include enhanced repulsive electrostatic interactions and/or altering of surface roughness properties. Our findings indicated that the release of retained CB is sensitive to transient IS conditions, but less dependent on pH increases and CB deposition in the presence of HA. This information is needed to quantify potential benefits and/or adverse risks of mobile CB in natural environments.


Assuntos
Carvão Vegetal/química , Substâncias Húmicas , Concentração Osmolar , Porosidade
19.
Environ Pollut ; 258: 113803, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31864922

RESUMO

Although nanoscale surface roughness has been theoretically demonstrated to be a crucial factor in the interaction of colloids and surfaces, little experimental research has investigated the influence of roughness on colloid or silver nanoparticle (AgNP) retention and release in porous media. This study experimentally examined AgNP retention and release using two sands with very different surface roughness properties over a range of solution pH and/or ionic strength (IS). AgNP transport was greatly enhanced on the relatively smooth sand in comparison to the rougher sand, at higher pH, and lower IS and fitted model parameters showed systematic changes with these physicochemical factors. Complete release of the retained AgNPs was observed from the relatively smooth sand when the solution IS was decreased from 40 mM NaCl to deionized (DI) water and then the solution pH was increased from 6.5 to 10. Conversely, less than 40% of the retained AgNPs was released in similar processes from the rougher sand. These observations were explained by differences in the surface roughness of the two sands which altered the energy barrier height and the depth of the primary minimum with solution chemistry. Limited numbers of AgNPs apparently interacted in reversible, shallow primary minima on the smoother sand, which is consistent with the predicted influence of a small roughness fraction (e.g., pillar) on interaction energies. Conversely, larger numbers of AgNPs interacted in deeper primary minima on the rougher sand, which is consistent with the predicted influence at concave locations. These findings highlight the importance of surface roughness and indicate that variations in sand surface roughness can greatly change the sensitivity of nanoparticle transport to physicochemical factors such as IS and pH due to the alteration of interaction energy and thus can strongly influence nanoparticle mobility in the environment.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Coloides , Nanopartículas , Concentração Osmolar , Porosidade , Dióxido de Silício , Propriedades de Superfície
20.
Environ Pollut ; 255(Pt 1): 113124, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31622956

RESUMO

The transport and retention behavior of polymer- (PVP-AgNP) and surfactant-stabilized (AgPURE) silver nanoparticles in carbonate-dominated saturated and unconsolidated porous media was studied at the laboratory scale. Initial column experiments were conducted to investigate the influence of chemical heterogeneity (CH) and nano-scale surface roughness (NR) arising from mixtures of clean, positively charged calcium carbonate sand (CCS), and negatively charged quartz sands. Additional column experiments were performed to elucidate the impact of CH and NR arising from the presence and absence of soil organic matter (SOM) on a natural carbonate-dominated aquifer material. The role of the nanoparticle capping agent was examined under all conditions tested in the column experiments. Nanoparticle transport was well described using a numerical model that facilitated blocking on one or two retention sites. Results demonstrate that an increase in CCS content in the artificially mixed porous medium leads to delayed breakthrough of the AgNPs, although AgPURE was much less affected by the CCS content than PVP-AgNPs. Interestingly, only a small portion of the solid surface area contributed to AgNP retention, even on positively charged CCS, due to the presence of NR which weakened the adhesive interaction. The presence of SOM enhanced the retention of AgPURE on the natural carbonate-dominated aquifer material, which can be a result of hydrophobic or hydrophilic interactions or due to cation bridging. Surprisingly, SOM had no significant impact on PVP-AgNP retention, which suggests that a reduction in electrostatic repulsion due to the presence of SOM outweighs the relative importance of other binding mechanisms. Our findings are important for future studies related to AgNP transport in shallow unconsolidated calcareous and siliceous sands.


Assuntos
Carbonato de Cálcio/análise , Nanopartículas Metálicas/análise , Compostos Orgânicos/química , Prata/análise , Solo/química , Água Subterrânea/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Porosidade , Quartzo/química , Solo/classificação , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA