Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37368696

RESUMO

Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.


Assuntos
Ecossistema , Toxinas Marinhas , Toxinas Marinhas/toxicidade , Colúmbia Britânica , Proliferação Nociva de Algas , Água
2.
J Fish Dis ; 45(5): 729-742, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235682

RESUMO

Atlantic Salmon (Salmo salar) and Chinook Salmon (Oncorhynchus tshawytscha) develop a severe liver disease called net-pen liver disease (NPLD), which is characterized by hepatic lesions that include megalocytosis and loss of gross liver structure. Based on studies where salmonids have been exposed to microcystin (MC) via intraperitoneal injection, NPLD is believed to be caused by MC exposure, a hepatotoxin produced by cyanobacteria. Despite the link between MC and NPLD, it remains uncertain if environmentally relevant MC exposure is responsible for NPLD. To determine if we could produce histopathology consistent with NPLD, we compared the response of Atlantic and Chinook Salmon sub-lethal MC exposure. Salmon were orally gavaged with saline or MC containing algal paste and sampled over 2 weeks post-exposure. Liver lesions appeared by 6 h but were resolved 2-weeks post-exposure; histopathological changes observed in other tissues were not as widespread, nor was their severity as great as those in the liver. There was no evidence for NPLD due to the absence of hepatic megalocytosis. These results indicate that the development of NPLD is not due to acute MC exposure but may be associated with higher MC concentration occurring in food, long-term exposure through drinking of contaminated seawater and/or interactions with other marine toxins.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/patologia , Microcistinas
3.
Fish Shellfish Immunol ; 94: 525-538, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539572

RESUMO

Aquatic rhabdoviruses are globally significant pathogens associated with disease in both wild and cultured fish. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes the internationally regulated disease infectious hematopoietic necrosis (IHN) in most species of salmon. Yet not all naïve salmon exposed to IHNV become diseased, and the mechanisms by which some individuals evade or rapidly clear infection following exposure are poorly understood. Here we used RNA-sequencing to evaluate transcriptomic changes in sockeye salmon, a keystone species in the North Pacific and natural host for IHNV, to evaluate the consequences of IHNV exposure and/or infection on host cell transcriptional pathways. Immersion challenge of sockeye salmon smolts with IHNV resulted in approximately 33% infection prevalence, where both prevalence and viral kidney load peaked at 7 days post challenge (dpc). De novo assembly of kidney transcriptomes at 7 dpc revealed that both infected and exposed but noninfected individuals experienced substantial transcriptomic modification; however, stark variation in gene expression patterns were observed between exposed but noninfected, infected, and unexposed populations. GO and KEGG pathway enrichment in concert with differential expression analysis identified that kidney responses in exposed but noninfected fish emphasised a global pattern of transcriptional down-regulation, particularly for pathways involved in DNA transcription, protein biosynthesis and macromolecule metabolism. In contrast, transcriptomes of infected fish demonstrated a global emphasis of transcriptional up-regulation highlighting pathways involved in antiviral response, inflammation, apoptosis, and RNA processing. Quantitative PCR was subsequently used to highlight differential and time-specific regulation of acute phase, antiviral, inflammatory, cell boundary, and metabolic responsive transcripts in both infected and exposed but noninfected groups. This data demonstrates that waterborne exposure with IHNV has a dramatic effect on the sockeye salmon kidney transcriptome that is discrete between resistant and acutely susceptible individuals. We identify that metabolic, acute phase and cell boundary pathways are transcriptionally affected by IHNV and kidney responses to local infection are highly divergent from those generated as part of a disseminated response. These data suggest that primary resistance of naïve fish to IHNV may involve global responses that encourage reduced cellular signaling rather than promoting classical innate antiviral responses.


Assuntos
Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Salmão/genética , Salmão/imunologia , Transcriptoma/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Rim/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carga Viral/fisiologia
4.
BMC Genomics ; 17(1): 848, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27806699

RESUMO

BACKGROUND: Piscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) - a highly pathogenic rhabdovirus endemic to the west coast of North America. RESULTS: Challenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads. CONCLUSIONS: PRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in a period of significant increasing viral load, nor does the presence of PRV change the host transcriptional response to an IHNV superinfection. Further, concurrent infections of PRV and IHNV do not appear to significantly influence the infectivity or severity of IHNV associated disease, or conversely, PRV load.


Assuntos
Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , Vírus da Necrose Hematopoética Infecciosa , Rim/metabolismo , Salmão/genética , Superinfecção , Transcriptoma , Animais , Biologia Computacional/métodos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Rim/virologia , Salmão/virologia
5.
PLoS One ; 11(1): e0146229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26730591

RESUMO

Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America-a region now considered endemic for PRV but without manifestation of HSMI-in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.


Assuntos
Doenças dos Peixes/virologia , Orthoreovirus/fisiologia , Infecções por Reoviridae/virologia , Salmo salar/virologia , Sequência de Aminoácidos , Animais , Cardiomiopatias/virologia , Doenças Endêmicas , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/transmissão , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Músculo Esquelético/patologia , Músculo Esquelético/virologia , Miosite/virologia , América do Norte/epidemiologia , Orthoreovirus/classificação , Orthoreovirus/genética , Filogenia , Prevalência , RNA Viral/sangue , RNA Viral/genética , RNA Viral/metabolismo , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/transmissão , Salmo salar/sangue , Homologia de Sequência de Aminoácidos , Fatores de Tempo
6.
J Comp Physiol B ; 182(3): 351-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22006282

RESUMO

Goldfish, Carassius auratus, adaptively remodel their gills in response to changes in ambient oxygen and temperature, altering the functional lamellar surface area to balance the opposing requirements for respiration and osmoregulation. In this study, the effects of thermal- and hypoxia-mediated gill remodeling on branchial Na(+) fluxes and the distribution of putative Na(+)-transporting ionocytes in goldfish were assessed. When assessed either in vitro (isolated gill arches) or in vivo at a common water temperature, the presence of an interlamellar cell mass (ILCM) in fish acclimated to 7°C clearly decreased Na(+) efflux across the gill relative to fish maintained at 25°C and lacking an ILCM. However, loss of the ILCM in 7°C-acclimated fish exposed to hypoxia led to a decrease in Na(+) efflux (assessed under hypoxic conditions) despite the apparent large increases in functional lamellar surface area. Goldfish possessing an ILCM were able to sustain Na(+) uptake, albeit at a lower rate matched to efflux, owing to the re-distribution of ionocytes expressing genes thought to be involved in Na(+) uptake [Na(+)/H(+) exchanger isoform 3 (NHE3) and V- type H(+)-ATPase] to the edge of the ILCM where they can establish contact with the surrounding environment. NHE-expressing cells co-localized with Na(+)/K(+)-ATPase expression, suggesting a role for NHE in Na(+)-uptake in the goldfish. Implications of the ILCM on ion fluxes in the goldfish are discussed.


Assuntos
Adaptação Fisiológica/fisiologia , Epitélio/metabolismo , Brânquias/fisiologia , Carpa Dourada/fisiologia , Sódio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Biologia Computacional , Crioultramicrotomia , Primers do DNA/genética , Brânquias/citologia , Brânquias/metabolismo , Carpa Dourada/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA