Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am Nat ; 203(4): 490-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489779

RESUMO

AbstractGregarious species must distinguish group members from nongroup members. Olfaction is important for group recognition in social insects and mammals but rarely studied in birds, despite birds using olfaction in social contexts from species discrimination to kin recognition. Olfactory group recognition requires that groups have a signature odor, so we tested for preen oil and feather chemical similarity in group-living smooth-billed anis (Crotophaga ani). Physiology affects body chemistry, so we also tested for an effect of egg-laying competition, as a proxy for reproductive status, on female chemical similarity. Finally, the fermentation hypothesis for chemical recognition posits that host-associated microbes affect host odor, so we tested for covariation between chemicals and microbiota. Group members were more chemically similar across both body regions. We found no chemical differences between sexes, but females in groups with less egg-laying competition had more similar preen oil, suggesting that preen oil contains information about reproductive status. There was no overall covariation between chemicals and microbes; instead, subsets of microbes could mediate olfactory cues in birds. Preen oil and feather chemicals showed little overlap and may contain different information. This is the first demonstration of group chemical signatures in birds, a finding of particular interest given that smooth-billed anis live in nonkin breeding groups. Behavioral experiments are needed to test whether anis can distinguish group members from nongroup members using odor cues.


Assuntos
Aves , Plumas , Animais , Feminino , Aves/fisiologia , Reprodução , Olfato , Mamíferos
2.
Microorganisms ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34946113

RESUMO

Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit the development of persistent oxygen concentrations within the water column, which are critical to the success of this reclamation approach. Here, we describe the results of a four-year (2015-2018) chemical and isotopic (δ13C) investigation into the dynamics of microbial methane cycling within Base Mine Lake (BML), the first full-scale pit lake commissioned in the AOSR. Overall, the water-column methane concentrations decreased over the course of the study, though this was dynamic both seasonally and annually. Phospholipid fatty acid (PLFA) distributions and δ13C demonstrated that dissolved methane, primarily input via fluid fine tailings (FFT) porewater advection, was oxidized by the water column microbial community at all sampling times. Modeling and under-ice observations indicated that the dissolution of methane from bubbles during ebullition, or when trapped beneath ice, was also an important source of dissolved methane. The addition of alum to BML in the fall of 2016 impacted the microbial cycling in BML, leading to decreased methane oxidation rates, the short-term dominance of a phototrophic community, and longer-term shifts in the microbial community metabolism. Overall, our results highlight a need to understand the dynamic nature of these microbial communities and the impact of perturbations on the associated biogeochemical cycling within oil sands pit lakes.

3.
Astrobiology ; 21(8): 981-996, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406806

RESUMO

Understanding the distribution of trace organic material in a rocky environment is a key to constraining the material requirements for sustaining microbial life. We used an ultraviolet laser-induced fluorescence (LIF) spectroscopy instrument to characterize the distribution of organic biosignatures in basalts collected from two Mars-analog environments. We correlated the fluorescence results with alteration-related sample properties. These samples exhibit a range of alteration conditions found in the volcanic environments of Hawai'i Volcanoes National Park, Hawai'i (HI), and Craters of the Moon National Monument, Idaho (ID), including fumarolic systems. LIF mapping of the sample surfaces and interiors showed a heterogeneous distribution of areas of highly fluorescent material (point[s]-of-interest [POIs])-with fluorescence characteristics indicative of organic material. Results suggest that POIs are associated with secondary alteration mineral deposits in the rock's vesicles, including zeolites and calcite. Scanning electron microscopy with electron-dispersive X-ray spectroscopy was used to characterize the mineralogy present at POIs and support the evidence of carbon-bearing material. Overall, samples collected proximate to active or relict meteoric fumaroles from Hawai'i were shown to contain evidence for organic deposits. This suggests that these minerals are measurable spectroscopic targets that may be used to inform sample-site selection for astrobiology research.


Assuntos
Exobiologia , Marte , Meio Ambiente Extraterreno , Havaí , Lasers , Minerais/análise , Espectrometria de Fluorescência
4.
Life (Basel) ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429118

RESUMO

Freshwater microbialites (i.e., lithifying microbial mats) are quite rare in northern latitudes of the North American continent, with two lakes (Pavilion and Kelly Lakes) of southeastern BC containing a morphological variety of such structures. We investigated Kelly Lake microbialites using carbon isotope systematics, phospholipid fatty acids (PLFAs) and quantitative PCR to obtain biosignatures associated with microbial metabolism. δ13CDIC values (mean δ13CDIC -4.9 ± 1.1‱, n = 8) were not in isotopic equilibrium with the atmosphere; however, they do indicate 13C-depleted inorganic carbon into Kelly Lake. The values of carbonates on microbialite surfaces (δ13C) fell within the range predicted for equilibrium precipitation from ambient lake water δ13CDIC (-2.2 to -5.3‱). Deep microbialites (26 m) had an enriched δ13Ccarb value of -0.3 ± 0.5‱, which is a signature of photoautotrophy. The deeper microbialites (>20 m) had higher biomass estimates (via PLFAs), and a greater relative abundance of cyanobacteria (measured by 16S copies via qPCR). The majority of PLFAs constituted monounsaturated and saturated PLFAs, which is consistent with gram-negative bacteria, including cyanobacteria. The central PLFA δ13C values were highly depleted (-9.3 to -15.7‱) relative to δ13C values of bulk organic matter, suggesting a predominance of photoautotrophy. A heterotrophic signature was also detected via the depleted iso- and anteiso-15:0 lipids (-3.2 to -5.2‱). Based on our carbonate isotopic biosignatures, PLFA, and qPCR measurements, photoautotrophy is enriched in the microbialites of Kelly Lake. This photoautotrophy enrichment is consistent with the microbialites of neighboring Pavilion Lake. This indication of photoautotrophy within Kelly Lake at its deepest depths raises new insights into the limits of measurable carbonate isotopic biosignatures under light and nutrient limitations.

5.
Astrobiology ; 19(3): 300-320, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840499

RESUMO

Biologic Analog Science Associated with Lava Terrains (BASALT) is a science-driven exploration program seeking to determine the best tools, techniques, training requirements, and execution strategies for conducting Mars-relevant field science under spaceflight mission conditions. BASALT encompasses Science, Science Operations, and Technology objectives. This article outlines the BASALT Science Operations background, strategic research questions, study design, and a portion of the results from the second field test. BASALT field tests are used to iteratively develop, integrate, test, evaluate, and refine new concepts of operations (ConOps) and capabilities that enable efficient and productive science. This article highlights the ConOps investigated during BASALT in light of future planetary extravehicular activity (EVA), which will focus on scientific exploration and discovery, and serves as an introduction to integrating exploration flexibility with operational rigor, the value of tactical and strategic science planning and execution, and capabilities that enable and enhance future science EVA operations.


Assuntos
Astronautas , Exobiologia/métodos , Atividade Extraespaçonave/fisiologia , Simulação de Ambiente Espacial , Eficiência , Havaí , Humanos , Marte , Aptidão Física , Projetos de Pesquisa
6.
Astrobiology ; 19(3): 347-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840500

RESUMO

Short-term and long-term science plans were developed as part of the strategic planning process used by the Biologic Analog Science Associated with Lava Terrains (BASALT) science team to conduct two Mars-simulation missions investigating basalt habitability at terrestrial volcanic analog sites in 2016. A multidisciplinary team of scientists generated and codified a range of scientific hypotheses distilled into a Science Traceability Matrix (STM) that defined the set of objectives pursued in a series of extravehicular activity (EVA) campaigns performed across multiple field deployments. This STM was used to guide the pre-deployment selection of sampling stations within the selected Mars analog sites on the Earth based on precursor site information such as multispectral imagery. It also informed selection of hand-held instruments and observational data to collect during EVA to aid sample selection through latency-impacted interaction with an Earth-based Science Support Team. A significant portion of the pre-deployment strategic planning activities were devoted to station selection, ultimately the locations used for sample collection and EVA planning. During development of the EVAs, the BASALT science team identified lessons learned that could be used to inform future missions and analog activities, including the critical need for high-resolution precursor imagery that would enable the selection of stations that could meet the scientific objectives outlined in the STM.


Assuntos
Exobiologia/organização & administração , Atividade Extraespaçonave , Marte , Simulação de Ambiente Espacial/métodos , Planejamento Estratégico , Exobiologia/métodos , Exobiologia/tendências , Previsões
7.
Astrobiology ; 19(3): 284-299, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840501

RESUMO

A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.


Assuntos
Biodiversidade , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Microbiota , Erupções Vulcânicas , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Havaí , Idaho , Marte , Filogenia , Silicatos/química
8.
Astrobiology ; 19(3): 426-439, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840509

RESUMO

Science-driven, human spaceflight missions of the future will rely on regular and interactive communication between Earth- and space-based teams during activity in which astronauts work directly on Mars or other planetary surfaces (extravehicular activity, EVA). The Biologic Analog Science Associated with Lava Terrains (BASALT) project conducted simulated human missions to Mars, complete with realistic one-way light time (OWLT) communication latency. We discuss the modes of communication used by the Mars- and Earth-based teams, including text, audio, video, and still imagery. Real-time communication between astronauts in the field (extravehicular, EV) and astronauts in a communication relay station (intravehicular, IV) was broadcast over OWLT, providing important contextual information to the Science Backroom Team (SBT) in Mission Control. Collaborative communication between the Earth- and Mars-based teams, however, requires active communication across latency via the Mission Log. We provide descriptive statistics of text communication between IV and SBT in a high-fidelity, scientifically driven analog for human space exploration. Over an EVA, the SBT sent an average of ∼23 text messages containing recommendations, requests, and answers to questions, while the science-focused IV crew member (IV2) sent an average of ∼38 text messages. Though patterns varied, communication between the IV and SBT teams tended to be highest during ∼50-150 min into the EVA, corresponding to the candidate sample search and presampling instrument survey phases, and then decreased dramatically after minute ∼200 during the sample collection phase. Generally, the IV2 and SBT used ∼4.6 min to craft a reply to a direct question or comment, regardless of message length or OWLT, offering a valuable glimpse into actual time-to-reply. We discuss IV2-SBT communication within the context of case examples from an EVA during which communication failures affected operations in the field. Finally, we offer recommendations for communication practices for use in future analogs and, perhaps, science-driven human spaceflight.


Assuntos
Comunicação , Exobiologia/organização & administração , Atividade Extraespaçonave , Marte , Comunicações Via Satélite , Astronautas , Planeta Terra , Exobiologia/tendências , Previsões , Humanos , Simulação de Ambiente Espacial , Fatores de Tempo
9.
Astrobiology ; 19(3): 245-259, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840510

RESUMO

The articles associated with this Special Collection focus on the NASA BASALT (Biologic Analog Science Associated with Lava Terrains) Research Program, which aims at answering the question, "How do we support and enable scientific exploration during human Mars missions?" To answer this the BASALT team conducted scientific field studies under simulated Mars mission conditions to both broaden our understanding of the habitability potential of basalt-rich terrains on Mars and examine the effects of science on current Mars mission concepts of operations. This article provides an overview of the BASALT research project, from the science, to the operational concepts that were tested and developed, to the technical capabilities that supported all elements of the team's research. Further, this article introduces the 12 articles that are included in this Special Collection.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Marte , Voo Espacial , Simulação de Ambiente Espacial , Astronautas , Humanos , Silicatos/química
10.
Astrobiology ; 19(3): 260-283, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30339033

RESUMO

Field research target regions within two basaltic geologic provinces are described as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawai'i, the United States, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provides rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho, and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake, and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawai'i. Our evaluation of compositional and textural attributes, as well as the effects of syn- and posteruptive rock alteration, shows that basaltic terrains in Idaho and Hawai'i provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Marte , Erupções Vulcânicas , Havaí , Idaho , Silicatos/química
11.
Biotechnol Biofuels ; 10: 84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367229

RESUMO

BACKGROUND: Bioenergy with carbon capture and storage (BECCS) has come to be seen as one of the most viable technologies to provide the negative carbon dioxide emissions needed to constrain global temperatures. In practice, algal biotechnology is the only form of BECCS that could be realized at scale without compromising food production. Current axenic algae cultivation systems lack robustness, are expensive and generally have marginal energy returns. RESULTS: Here it is shown that microbial communities sampled from alkaline soda lakes, grown as biofilms at high pH (up to 10) and high alkalinity (up to 0.5 kmol m-3 NaHCO3 and NaCO3) display excellent (>1.0 kg m-3 day-1) and robust (>80 days) biomass productivity, at low projected overall costs. The most productive biofilms contained >100 different species and were dominated by a cyanobacterium closely related to Phormidium kuetzingianum (>60%). CONCLUSION: Frequent harvesting and red light were the key factors that governed the assembly of a stable and productive microbial community.

12.
Int J Syst Evol Microbiol ; 67(3): 602-609, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902294

RESUMO

An aerobic, mildly acidophilic actinobacterium was isolated from the Ochre Beds bog in Kootenay National Park, Canada. Cells of isolate OB1T were Gram-stain-positive, non-motile, pink- to purple-pigmented filaments. The pH range for growth was pH 3.5-6.5 (optimum pH 5.5), and the temperature range was 13-30°C. The major cellular fatty acids were i-C16 : 0 (28.5 %), i-C15 : 0 (14.6 %) and ai-C15 : 0 (14.3 %), and the major polar lipid was phosphohexose. The major quinone was menaquinone-11 (MK-11), and the peptidoglycan type was A1γ. The DNA G+C content was 70.2 %. Along with growth on complex media including yeast extract, proteose peptone, casamino acids and tryptic soy broth, growth occured on mono- and disaccharides (glucose, sucrose, galactose and xylose) and polysaccharides (starch, gellan, pectin, xylan and alginate). Anaerobic growth was not observed. The cells did not fix atmospheric nitrogen. On the basis of comparative 16S rRNA gene sequence analysis, this isolate belonged to the family Actinospicaceae, in the suborder Catenulisporineae of the order Actinomycetales. The most closely related species was Actinospica robiniae. However, the 16S rRNA gene sequence identity to this bacterium was low (92.8 %) and there were several chemotaxonomic differences from this species. We therefore propose a novel genus and species, Actinocrinis puniceicyclus gen. nov., sp. nov., with strain OB1T (=DSM 45618T=ATCC BAA-2771T) as the type strain.


Assuntos
Actinobacteria/classificação , Nascentes Naturais/microbiologia , Filogenia , Ácidos , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Canadá , DNA Bacteriano/genética , Ácidos Graxos/química , Peptidoglicano/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
13.
Nat Commun ; 7: 10476, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814032

RESUMO

Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum ('Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic 'blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fontes Termais/microbiologia , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , Fontes Termais/química , Temperatura Alta , Metagenômica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
14.
Front Microbiol ; 6: 897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388850

RESUMO

Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

15.
Appl Environ Microbiol ; 81(14): 4607-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934620

RESUMO

The exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced by Gluconacetobacter xylinus or the EPS produced by Beijerinckia indica. The latter is a heteropolysaccharide comprised primarily of l-guluronic acid, d-glucose, and d-glycero-d-mannoheptose. (13)C-labeled EPS and (13)C-labeled cellulose were purified from bacterial cultures grown on [(13)C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from (13)C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However, B. indica EPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylum Planctomycetes. In one incubation, members of the Planctomycetes made up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance of Planctomycetes suggested that they were primary degraders of EPS. Other bacteria assimilating B. indica EPS included members of the Verrucomicrobia, candidate division OD1, and the Armatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Polissacarídeos/metabolismo , Bactérias/classificação , Bactérias/genética , Beijerinckiaceae/química , Beijerinckiaceae/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/metabolismo , Celulose/química , Celulose/metabolismo , Gluconacetobacter xylinus/química , Gluconacetobacter xylinus/metabolismo , Filogenia , Polissacarídeos/química , Microbiologia do Solo
16.
Front Microbiol ; 6: 1531, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26903951

RESUMO

Modern microbialites are complex microbial communities that interface with abiotic factors to form carbonate-rich organosedimentary structures whose ancestors provide the earliest evidence of life. Past studies primarily on marine microbialites have inventoried diverse taxa and metabolic pathways, but it is unclear which of these are members of the microbialite community and which are introduced from adjacent environments. Here we control for these factors by sampling the surrounding water and nearby sediment, in addition to the microbialites and use a metagenomics approach to interrogate the microbial community. Our findings suggest that the Pavilion Lake microbialite community profile, metabolic potential and pathway distributions are distinct from those in the neighboring sediments and water. Based on RefSeq classification, members of the Proteobacteria (e.g., alpha and delta classes) were the dominant taxa in the microbialites, and possessed novel functional guilds associated with the metabolism of heavy metals, antibiotic resistance, primary alcohol biosynthesis and urea metabolism; the latter may help drive biomineralization. Urea metabolism within Pavilion Lake microbialites is a feature not previously associated in other microbialites. The microbialite communities were also significantly enriched for cyanobacteria and acidobacteria, which likely play an important role in biomineralization. Additional findings suggest that Pavilion Lake microbialites are under viral selection as genes associated with viral infection (e.g CRISPR-Cas, phage shock and phage excision) are abundant within the microbialite metagenomes. The morphology of Pavilion Lake microbialites changes dramatically with depth; yet, metagenomic data did not vary significantly by morphology or depth, indicating that microbialite morphology is altered by other factors, perhaps transcriptional differences or abiotic conditions. This work provides a comprehensive metagenomic perspective of the interactions and differences between microbialites and their surrounding environment, and reveals the distinct nature of these complex communities.

17.
Front Microbiol ; 6: 1533, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26869997

RESUMO

Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m(3) FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 10(8) m(3) of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyrosequencing and lipid analyses identified high aqueous concentrations of ∑H2S (>300 µM) and highly altered sulfur compounds composition; low cell biomass (3.3 × 10(6)- 6.0 × 10(6) cells g(-1)) and modest bacterial diversity (H' range between 1.4 and 1.9) across 5 depths spanning 34 m of an in situ CT deposit. Pyrosequence results identified a total of 29,719 bacterial 16S rRNA gene sequences, representing 131 OTUs spanning19 phyla including 7 candidate divisions, not reported in oil sands tailings pond studies to date. Legacy FFT common phyla, notably, gamma and beta Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi were represented. However, overall CT microbial diversity and PLFA values were low relative to other contexts. The identified known sulfate/sulfur reducing bacteria constituted at most 2% of the abundance; however, over 90% of the 131 OTUs identified are capable of sulfur metabolism. While PCR biases caution against overinterpretation of pyrosequence surveys, bacterial sequence results identified here, align with phospholipid fatty acid (PLFA) and geochemical results. The highest bacterial diversities were associated with the depth of highest porewater [∑H2S] (22-24 m) and joint porewater co-occurrence of Fe(2+) and ∑H2S (6-8 m). Three distinct bacterial community structure depths corresponded to CT porewater regions of (1) shallow evident Fe((II)) (<6 m), (2) co-occurring Fe((II)) and ∑H2S (6-8 m) and (3) extensive ∑H2S (6-34 m) (UniFrac). Candidate divisions GNO2, NKB19 and Spam were present only at 6-8 m associated with co-occurring [Fe((II))] and [∑H2S]. Collectively, results indicate that CT materials are differentiated from other sulfur rich environments by modestly diverse, low abundance, but highly sulfur active and more enigmatic communities (7 candidate divisions present within the 19 phyla identified).

18.
FEMS Microbiol Ecol ; 90(1): 92-102, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24986354

RESUMO

We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 µmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites.


Assuntos
Alphaproteobacteria/metabolismo , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Fontes Termais , Metano/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Isótopos de Carbono , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiologia do Solo
19.
ISME J ; 8(6): 1166-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24430481

RESUMO

Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Fontes Termais/microbiologia , Temperatura , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Concentração de Íons de Hidrogênio , Nova Zelândia , RNA Ribossômico 16S/genética , Microbiologia do Solo
20.
Int J Syst Evol Microbiol ; 63(Pt 2): 654-660, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22544793

RESUMO

An aerobic chemoheterotrophic gliding bacterium, designated RYG(T), was isolated from a soil in Germany. Cells were Gram-stain-negative, thin rods (0.4-0.6 µm in width and 2.0-5.5 µm in length). Cells multiplied by normal cell division and no resting stages were observed. Colonies were yellow and displayed swarming edges. Gliding motility was observed in wet mounts. Strain RYG(T) grew at pH 5.6-7.7 (optimum pH 6.6-7.0), at 13-37 °C (optimum 25-30 °C) and with 0-1.0 % NaCl (optimum 0-0.1 %). The isolate was incapable of atmospheric nitrogen fixation and grew on most mono- and disaccharides as well as a few polysaccharides and organic acids. The predominant menaquinone was MK-7, the major cellular fatty acids were C(16 : 1)ω5c and iso-C(15 : 0) and the major intact polar lipids were composed of phosphatidylethanolamine derivatives and two unknown series. The DNA G+C content was 49.9 mol%. Based on 16S rRNA gene sequence analysis, the isolate belonged to the phylum Bacteroidetes, class Cytophagia, order Cytophagales, but was only distantly related to any cultured bacteria. The closest relatives were Ohtaekwangia koreensis 3B-2(T) and Ohtaekwangia kribbensis 10AO(T) (both 93 % 16S rRNA gene sequence similarity). We propose a novel genus and species, Chryseolinea serpens gen. nov., sp. nov.. Strain RYG(T) ( = DSM 24574(T) = ATCC BAA-2075(T)) is the type strain.


Assuntos
Bacteroidetes/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Alemanha , Dados de Sequência Molecular , Fosfatidiletanolaminas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA