Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sleep Adv ; 5(1): zpae032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903700

RESUMO

Study Objectives: We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days. Methods: Sixteen crewmembers (37.4 ±â€…6.7 years; 5F) underwent six cycles of 2 × 8-hour/night followed by 5 × 5-hour/night sleep opportunities. During the DLS (n = 8), daytime white light exposure was blue-enriched (~6000 K; Level 1: 1079, Level 2: 76 melanopic equivalent daytime illuminance (melEDI) lux) and blue-depleted (~3000-4000 K; L1: 21, L2: 2 melEDI lux) 3 hours before bed. In the standard lighting schedule (SLS; n = 8), lighting remained constant (~4500K; L1: 284, L2 62 melEDI lux). Effects of lighting condition (DLS/SLS), sleep condition (5/8 hours), time into mission, and their interactions, and time awake on PVT performance were analyzed using generalized linear mixed models. Results: The DLS was associated with fewer attentional lapses (reaction time [RT] > 500 milliseconds) compared to SLS. Lapses, mean RT, and 10% fastest/slowest RTs were worse following 5 compared to 8 hours of sleep but not between lighting conditions. There was an effect of time into mission on RTs, likely due to sleep loss. Overall performance differed by time of day, with longer RTs at the beginning and end of the day. There were more lapses and slower RTs in the afternoon in the SLS compared to the DLS condition. Conclusions: Future missions should incorporate DLS to enhance circadian alignment and performance. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.

2.
PLoS Biol ; 22(3): e3002535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470868

RESUMO

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.


Assuntos
Experimentação Animal , Animais de Laboratório , Animais , Reprodutibilidade dos Testes , Ritmo Circadiano/fisiologia , Mamíferos
3.
J Am Assoc Lab Anim Sci ; 63(2): 116-147, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211974

RESUMO

Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.


Assuntos
Animais de Laboratório , Ritmo Circadiano , Luz , Iluminação , Animais , Ritmo Circadiano/fisiologia , Animais de Laboratório/fisiologia , Experimentação Animal/ética
4.
Sleep Health ; 10(1S): S34-S40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37748973

RESUMO

OBJECTIVE: To examine effects of menstrual phase and nighttime light exposure on subjective sleepiness and auditory Psychomotor Vigilance Task performance. METHODS: Twenty-nine premenopausal women (12 =Follicular; 17 =Luteal) completed a 6.5-hour nighttime monochromatic light exposure with varying wavelengths (420-620 nm) and irradiances (1.03-14.12 µW/cm2). Subjective sleepiness, reaction time, and attentional lapses were compared between menstrual phases in women with minimal (<33%) or substantial (≥33%) light-induced melatonin suppression. RESULTS: When melatonin was not suppressed, women in the follicular phase had significantly worse reaction time (mean difference=145.1 ms, 95% CI 51.8-238.3, p < .001, Cohen's D=1.9) and lapses (mean difference=12.9 lapses, 95% CI 4.37-21.41, p < .001, Cohen's D=1.7) compared to women in the luteal phase. When melatonin was suppressed, women in the follicular phase had significantly better reaction time (mean difference=152.1 ms, 95% CI 43.88-260.3, p < .001, Cohen's D=1.7) and lapses (mean difference=12.3 lapses, 95% CI 1.14-25.6, p < .01, Cohen's D=1.6) compared to when melatonin was not suppressed, such that their performance was not different (p > .9) from women in the luteal phase. Subjective sleepiness did not differ by menstrual phase (mean difference=0.6, p > .08) or melatonin suppression (mean difference=0.2, p > .4). CONCLUSIONS: Nighttime light exposure sufficient to suppress melatonin can also mitigate neurobehavioral performance deficits associated with the follicular phase. Despite the relatively small sample size, these data suggest that nighttime light may be a valuable strategy to help reduce errors and accidents in female shift workers.

5.
Proc Natl Acad Sci U S A ; 119(51): e2205301119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508661

RESUMO

Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.


Assuntos
Melatonina , Humanos , Ritmo Circadiano/fisiologia , Opsinas de Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Fatores de Tempo
6.
Clocks Sleep ; 4(4): 633-657, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36412582

RESUMO

INTRODUCTION: In 2009, the World Health Organization identified vehicle crashes, both injury-related and fatal, as a public health hazard. Roadway lighting has long been used to reduce crashes and improve the safety of all road users. Ocular light exposure at night can suppress melatonin levels in humans. At sufficient light levels, all visible light wavelengths can elicit this response, but melatonin suppression is maximally sensitive to visible short wavelength light. With the conversion of roadway lighting to solid state sources that have a greater short wavelength spectrum than traditional sources, there is a potential negative health impact through suppressed melatonin levels to roadway users and those living close to the roadway. This paper presents data on the impact of outdoor roadway lighting on salivary melatonin in three cohorts of participants: drivers, pedestrians, and those experiencing light trespass in their homes. METHODS: In an outdoor naturalistic roadway environment, healthy participants (N = 29) each being assigned to a cohort of either pedestrian, driver, or light trespass experiment, were exposed to five different solid state light sources with differing spectral emissions and one no lighting condition. Salivary melatonin measurements were made under an average roadway luminance of 1.0 cd/m2 (IES RP-18 Roadway Lighting Requirements for expressway roads) with a corneal melanopic Equivalent Daylight Illuminances (EDI) ranging from 0.22 to 0.86 lux. RESULTS: The results indicate that compared to the no roadway lighting condition, the roadway light source spectral content did not significantly impact salivary melatonin levels in the participants in any of the cohorts. CONCLUSIONS: These data show that recommended levels of street lighting for expressway roads do not elicit an acute suppression of salivary melatonin and suggest that the health benefit of roadway lighting for traffic safety is not compromised by an acute effect on salivary melatonin.

7.
J Pineal Res ; 73(4): e12826, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35996978

RESUMO

Spaceflight exposes crewmembers to circadian misalignment and sleep loss, which impair cognition and increase the risk of errors and accidents. We compared the effects of an experimental dynamic lighting schedule (DLS) with a standard static lighting schedule (SLS) on circadian phase, self-reported sleep and cognition during a 45-day simulated space mission. Sixteen participants (mean age [±SD] 37.4 ± 6.7 years; 5 F; n = 8/lighting condition) were studied in four-person teams at the NASA Human Exploration Research Analog. Participants were scheduled to sleep 8 h/night on two weekend nights, 5 h/night on five weekday nights, repeated for six 7-day cycles, with scheduled waketime fixed at 7:00 a.m. Compared to the SLS where illuminance and spectrum remained constant during wake (~4000K), DLS increased the illuminance and short-wavelength (blue) content of white light (~6000K) approximately threefold in the main workspace (Level 1), until 3 h before bedtime when illuminance was reduced by ~96% and the blue content also reduced throughout (~4000K × 2 h, ~3000K × 1 h) until bedtime. The average (±SE) urinary 6-sulphatoxymelatonin (aMT6s) acrophase time was significantly later in the SLS (6.22 ± 0.34 h) compared to the DLS (4.76 ± 0.53 h) and more variable in SLS compared to DLS (37.2 ± 3.6 min vs. 28.2 ± 2.4 min, respectively, p = .04). Compared to DLS, self-reported sleep was more frequently misaligned relative to circadian phase in SLS RR: 6.75, 95% CI 1.55-29.36, p = .01), but neither self-reported sleep duration nor latency to sleep was different between lighting conditions. Accuracy in the abstract matching and matrix reasoning tests were significantly better in DLS compared to SLS (false discovery rate-adjusted p ≤ .04). Overall, DLS alleviated the drift in circadian phase typically observed in space analog studies and reduced the prevalence of self-reported sleep episodes occurring at an adverse circadian phase. Our results support incorporating DLS in future missions, which may facilitate appropriate circadian alignment and reduce the risk of sleep disruption.


Assuntos
Iluminação , Melatonina , Humanos , Adulto , Ritmo Circadiano , Autorrelato , Sono , Luz
8.
Prog Brain Res ; 273(1): xvii-xix, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35940727
9.
J Pineal Res ; 73(1): e12805, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35501292

RESUMO

Circadian adaptation to shifted sleep/wake schedules may be facilitated by optimizing the timing, intensity and spectral characteristics of light exposure, which is the principal time cue for mammalian circadian pacemaker, and possibly by strategically timing nonphotic time cues such as exercise. Therefore, circadian phase resetting by light and exercise was assessed in 44 healthy participants (22 females, mean age [±SD] 36.2 ± 9.2 years), who completed 8-day inpatient experiments simulating night shiftwork, which included either an 8 h advance or 8 h delay in sleep/wake schedules. In the advance protocol (n = 18), schedules were shifted either gradually (1.6 h/day across 5 days) or abruptly (slam shift, 8 h in 1 day and maintained across 5 days). Both advance protocols included a dynamic lighting schedule (DLS) with 6.5 h exposure of blue-enriched white light (704 melanopic equivalent daylight illuminance [melEDI] lux) during the day and dimmer blue-depleted light (26 melEDI lux) for 2 h immediately before sleep on the shifted schedule. In the delay protocol (n = 26), schedules were only abruptly delayed but included four different lighting conditions: (1) 8 h continuous room-light control; (2) 8 h continuous blue-enriched light; (3) intermittent (7 × 15 min pulses/8 h) blue-enriched light; (4) 8 h continuous blue-enriched light plus moderate intensity exercise. In the room-light control, participants received dimmer white light for 30 min before bedtime, whereas in the other three delay protocols participants received dimmer blue-depleted light for 30 min before bedtime. Both the slam and gradual advance protocols induced similar shifts in circadian phase (3.28 h ± 0.37 vs. 2.88 h ± 0.31, respectively, p = .43) estimated by the change in the timing of timing of dim light melatonin onset. In the delay protocol, the continuous 8 h blue-enriched exposure induced significantly larger shifts than the room light control (-6.59 h ± 0.43 vs. -4.74 h ± 0.62, respectively, p = .02). The intermittent exposure induced ~60% of the shift (-3.90 h ± 0.62) compared with 8 h blue-enriched continuous light with only 25% of the exposure duration. The addition of exercise to the 8 h continuous blue-enriched light did not result in significantly larger phase shifts (-6.59 h ± 0.43 vs. -6.41 h ± 0.69, p = .80). Collectively, our results demonstrate that, when attempting to adapt to an 8 h overnight work shift, delay shifts are more successful, particularly when accompanied by a DLS with high-melanopic irradiance light stimulus during wake.


Assuntos
Ritmo Circadiano , Melatonina , Adaptação Fisiológica , Adulto , Feminino , Humanos , Iluminação , Pessoa de Meia-Idade , Sono
10.
PLoS Biol ; 20(3): e3001571, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298459

RESUMO

Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.


Assuntos
Sono , Vigília , Adulto , Ritmo Circadiano/fisiologia , Cognição , Olho , Humanos , Iluminação , Sono/fisiologia , Vigília/fisiologia
11.
J Pineal Res ; 71(2): e12752, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34118084

RESUMO

Shiftwork and circadian disruption are associated with adverse metabolic effects. Therefore, we examined whether clinical biomarkers of metabolic health are under endogenous circadian regulation using a 40 hours constant routine protocol (CR; constant environmental and behavioral conditions) and evaluated the impact of typical daily conditions with periodic sleep and meals (baseline; 8 hours sleep at night, four meals during a 16 hour wake episode) on the phase and amplitude of these rhythms. Additionally, we tested whether these circadian rhythms are reset during simulated shiftwork. Under CR (n = 16 males, mean age ± SD = 23.4 ± 2.3 years), we found endogenous circadian rhythms in cholesterol, HDL and LDL, albumin and total protein, and VLDL and triglyceride. The rhythms were masked under baseline conditions except for cholesterol, which had near-identical phases under both conditions. Resetting of the cholesterol rhythm and Dim Light Melatonin Onset (DLMO) was then tested in a study of simulated shiftwork (n = 25, 14 females, 36.3 ± 8.9 years) across four protocols; two with abrupt 8 hour delay shifts and exposure to either blue-enriched or standard white light; and either an abrupt or gradual 8 hour advance (1.6 hours/day over 5 days) both with exposure to blue-enriched white light. In the delay protocols, the cholesterol rhythm shifted later by -3.7 hours and -4.2 hours, respectively, compared to -6.6 hours and -4.7 hours, for DLMO. There was a significant advance in cholesterol in the abrupt (+5.1 hours) but not the gradual (+2.1 hours) protocol, compared to +3.1 hours and +2.8 hours in DLMO, respectively. Exploratory group analysis comparing the phases of all metabolic biomarkers under both studies showed evidence of phase shifts due to simulated shiftwork. These results show that clinical biomarkers of metabolic health are under endogenous circadian regulation but that the expression of these rhythms is substantially influenced by environmental factors. These rhythms can also be reset, which has implications for understanding how both behavioral changes and circadian shifts due to shiftwork may disrupt metabolic function.


Assuntos
Melatonina , Transtornos do Sono do Ritmo Circadiano , Biomarcadores , Ritmo Circadiano/fisiologia , Feminino , Humanos , Luz , Masculino , Melatonina/metabolismo , Sono/fisiologia
12.
Biochem Pharmacol ; 191: 114504, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33711285

RESUMO

Intermittent light (IML) pulses are more efficient per minute of exposure than continuous exposure in resetting the phase of the human circadian pacemaker. We assessed the spectral sensitivity in phase resetting, melatonin suppression and alertness induced by IML pulses. Twelve healthy young adults (6 females; mean age ± SD = 25.4 ± 3.6 years) were exposed to six monochromatic light pulses (2.8 × 1013 photons/cm2/s) over a 6.5 h window during the biological night. Six participants (3F) received 6 × 15-minute 460 nm (blue) pulses and six participants received 6 × 2-minute 555 nm (green) light pulses. Results were compared to historical data in 16 individuals who received continuous 460 nm (n = 8) or 555 nm (n = 8) light exposure using an identical protocol. As expected, long duration continuous 460 nm light exposure induced the largest total phase delay shifts, but intermittent 555 nm light induced the largest phase delay shifts per minute of the photic stimulus. Melatonin suppression was significantly higher under continuous light exposure compared to intermittent exposure patterns, and for 460 nm versus 555 nm exposure (under both light patterns). These data extend prior work showing a non-linear relationship between light exposure duration and phase resetting responses and illustrate the potential role of light wavelength, and therefore photoreceptor recruitment, in mediating these responses.


Assuntos
Ritmo Circadiano/fisiologia , Melatonina/antagonistas & inibidores , Melatonina/sangue , Estimulação Luminosa/métodos , Vigília/fisiologia , Actigrafia/métodos , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
13.
ILAR J ; 60(2): 150-158, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33094817

RESUMO

Light is a key extrinsic factor to be considered in operations and design of animal room facilities. Over the past four decades, many studies on typical laboratory animal populations have demonstrated impacts on neuroendocrine, neurobehavioral, and circadian physiology. These effects are regulated independently from the defined physiology for the visual system. The range of physiological responses that oscillate with the 24 hour rhythm of the day include sleep and wakefulness, body temperature, hormonal secretion, and a wide range of other physiological parameters. Melatonin has been the chief neuroendocrine hormone studied, but acute light-induced effects on corticosterone as well as other hormones have also been observed. Within the last two decades, a new photosensory system in the mammalian eye has been discovered. A small set of retinal ganglion cells, previously thought to function as a visual output neuron, have been shown to be directly photosensitive and act differently from the classic photoreceptors of the visual system. Understanding the effects of light on mammalian physiology and behavior must take into account how the classical visual photoreceptors and the newly discovered ipRGC photoreceptor systems interact. Scientists and facility managers need to appreciate lighting impacts on circadian, neuroendocrine, and neurobehavioral regulation in order to improve lighting of laboratory facilities to foster optimum health and well-being of animals.


Assuntos
Animais de Laboratório , Luz , Animais , Ritmo Circadiano/efeitos da radiação , Células Neuroendócrinas/efeitos da radiação
14.
Sleep ; 43(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31670824

RESUMO

STUDY OBJECTIVES: Women in the luteal phase of the menstrual cycle exhibit better cognitive performance overnight than women in the follicular phase, although the mechanism is unknown. Given the link between core body temperature (CBT) and performance, one potential mechanism is the thermoregulatory role of progesterone (P4), estradiol (E2), and their ratio (P4/E2), which change across the menstrual cycle. We examined the role of P4/E2 in modulating performance during extended wake in premenopausal women. Additionally, we compared the acute effects of nighttime light exposure on performance, CBT, and hormones between the menstrual phases. METHODS: Participants were studied during a 50 h constant routine and a 6.5 h monochromatic nighttime light exposure. Participants were 16 healthy, naturally cycling women (eight follicular; eight luteal). Outcome measures included reaction time, attentional failures, self-reported sleepiness, CBT, melatonin, P4, and E2. RESULTS: As compared to women in the luteal phase, women in the follicular phase exhibited worse performance overnight. CBT was significantly associated with performance, P4, and P4/E2 but not with other sex hormones. Sex hormones were not directly related to performance. Light exposure that suppressed melatonin improved performance in the follicular phase (n = 4 per group) to levels observed during the luteal phase and increased CBT but without concomitant changes in P4/E2. CONCLUSIONS: Our results underscore the importance of considering menstrual phase when assessing cognitive performance during sleep loss in women and indicate that these changes are driven predominantly by CBT. Furthermore, this study shows that vulnerability to sleep loss during the follicular phase may be resolved by exposure to light.


Assuntos
Fase Folicular , Progesterona , Estradiol , Feminino , Humanos , Fase Luteal , Temperatura
15.
Comp Med ; 69(5): 350-373, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540584

RESUMO

Light is a potent biologic force that profoundly influences circadian, neuroendocrine, and neurobehavioral regulation in animals. Previously we examined the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit more light in the blue-appearing portion of the visible spectrum (465 to 485 nm) than do broad-spectrum cool white fluorescent (CWF) light, on the nighttime melatonin amplitude and circadian regulation of metabolism and physiology. In the current studies, we tested the hypothesis that exposure to blue-enriched LED light at day (bLAD), compared with CWF, promotes the circadian regulation of neuroendocrine, metabolic, and physiologic parameters that are associated with optimizing homeostatic regulation of health and wellbeing in 3 mouse strains commonly used in biomedical research (C3H [melatonin-producing], C57BL/6, and BALB/c [melatonin-non-producing]). Compared with male and female mice housed for 12 wk under 12:12-h light:dark (LD) cycles in CWF light, C3H mice in bLAD evinced 6-fold higher peak plasma melatonin levels at the middark phase; in addition, high melatonin levels were prolonged 2 to 3 h into the light phase. C57BL/6 and BALB/c strains did not produce nighttime pineal melatonin. Body growth rates; dietary and water intakes; circadian rhythms of arterial blood corticosterone, insulin, leptin, glucose, and lactic acid; pO2 and pCO2; fatty acids; and metabolic indicators (cAMP, DNA, tissue DNA 3H-thymidine incorporation, fat content) in major organ systems were significantly lower and activation of major metabolic signaling pathways (mTOR, GSK3ß, and SIRT1) in skeletal muscle and liver were higher only in C3H mice in bLAD compared with CWF. These data show that exposure of C3H mice to bLAD compared with CWF has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing that may influence scientific outcomes. The absence of enhancement in amelatonic strains suggests hyperproduction of nighttime melatonin may be a key component of the physiology.


Assuntos
Ritmo Circadiano/fisiologia , Luz , Camundongos Endogâmicos BALB C/metabolismo , Camundongos Endogâmicos C3H/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Animais , Feminino , Masculino , Melatonina/sangue , Camundongos/metabolismo
16.
IEEE J Transl Eng Health Med ; 7: 3200110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32309057

RESUMO

OBJECTIVE: Lighting is a strong synchronizer for circadian rhythms, which in turn drives a wide range of biological functions. The objective of our work is a) to construct a clinical in-patient testbed with smartI lighting, and b) evaluate its feasibility for use in future clinical studies. METHODS: A feedback capable, variable spectrum lighting system was installed at the University of New Mexico Hospital. The system consists of variable spectrum lighting troffers, color sensors, occupancy sensors, and computing and communication infrastructure. We conducted a pilot study to demonstrate proof of principle, that 1) this new technology is capable of providing continuous lighting and sensing in an active clinical environment, 2) subject recruitment and retention is feasible for round-the-clock, multi-day studies, and 3) current techniques for circadian regulation can be deployed in this unique testbed. Unlike light box studies, only troffer-based lighting was used, and both lighting intensity and spectral content were varied. RESULTS: The hardware and software functioned seamlessly to gather biometric data and provide the desired lighting. Salivary samples that measure dim-light melatonin onset showed phase advancement for all three subjects. CONCLUSION: We executed a five-day circadian rhythm study that varied intensity, spectrum, and timing of lighting as proof-of-concept or future clinical studies with troffer-based, variable spectrum lighting. Clinical Impact: The ability to perform circadian rhythm experiments in more realistic environments that do not overly constrain the subject is important for translating lighting research into practice, as well as for further research on the health impacts of lighting.

17.
Comp Med ; 66(5): 373-383, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780004

RESUMO

Regular cycles of exposure to light and dark control pineal melatonin production and temporally coordinate circadian rhythms of metabolism and physiology in mammals. Previously we demonstrated that the peak circadian amplitude of nocturnal blood melatonin levels of rats were more than 6-fold higher after exposure to cool white fluorescent (CWF) light through blue-tinted (compared with clear) rodent cages. Here, we evaluated the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit light rich in the blue-appearing portion of the visible spectrum (465-485 nm), compared with standard broadspectrum CWF light, on melatonin levels during the subsequent dark phase and on plasma measures of metabolism and physiology. Compared with those in male rats under a 12:12-h light:dark cycle in CWF light, peak plasma melatonin levels at the middark phase (time, 2400) in rats under daytime LED light were over 7-fold higher, whereas midlight phase levels (1200) were low in both groups. Food and water intakes, body growth rate, and total fatty acid content of major metabolic tissues were markedly lower, whereas protein content was higher, in the LED group compared with CWF group. Circadian rhythms of arterial plasma levels of total fatty acids, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were generally lower in LED-exposed rats. Therefore, daytime exposure of rats to LED light with high blue emissions has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing and thus may influence scientific outcomes.


Assuntos
Ritmo Circadiano/efeitos da radiação , Melatonina/metabolismo , Animais , Glicemia/efeitos da radiação , Corticosterona/sangue , Insulina/sangue , Ácido Láctico/sangue , Leptina/sangue , Luz , Masculino , Fotoperíodo , Ratos , Ratos Endogâmicos
18.
Curr Opin Pulm Med ; 22(6): 535-44, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27607152

RESUMO

PURPOSE OF REVIEW: The review addresses the development of a new solid-state lighting system for the International Space Station (ISS) that is intended to enhance the illumination of the working and living environment of astronauts and to improve sleep, circadian entrainment, and daytime alertness. RECENT FINDINGS: Spaceflight missions often expose astronauts and mission support ground crews to atypical sleep-wake cycles and work schedules. A recent, extensive study describes the sleep characteristics and use of sleep-promoting pharmaceuticals in astronauts before, during, and after spaceflight. The acceptability, feasibility, and efficacy of the new ISS solid-state lighting systems are currently being tested in ground-based, analog studies. Installation of this lighting system on the ISS is scheduled to begin later this year. In-flight testing of this lighting system is planned to take place during ISS spaceflight expeditions. SUMMARY: If the new ISS lighting system is capable of improving circadian entrainment and sleep during spaceflight, it should enhance astronaut health, performance, well-being, and safety. Such an advance would open the door to future lighting applications for humans living on Earth.


Assuntos
Ritmo Circadiano , Sono , Voo Espacial , Astronautas , Humanos , Luz
19.
Comp Med ; 65(6): 473-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26678364

RESUMO

Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.


Assuntos
Divisão Celular/fisiologia , Ritmo Circadiano , Luz , Melatonina/fisiologia , Neoplasias da Próstata/patologia , Animais , Glicemia/análise , Corticosterona/sangue , Ácidos Graxos/sangue , Humanos , Insulina/sangue , Ácido Láctico/sangue , Leptina/sangue , Masculino , Melatonina/sangue , Ratos , Ratos Nus
20.
J Pineal Res ; 58(3): 352-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25726691

RESUMO

The basic goal of this research is to determine the best combination of light wavelengths for use as a lighting countermeasure for circadian and sleep disruption during space exploration, as well as for individuals living on Earth. Action spectra employing monochromatic light and selected monochromatic wavelength comparisons have shown that short-wavelength visible light in the blue-appearing portion of the spectrum is most potent for neuroendocrine, circadian, and neurobehavioral regulation. The studies presented here tested the hypothesis that broad spectrum, polychromatic fluorescent light enriched in the short-wavelength portion of the visible spectrum is more potent for pineal melatonin suppression in healthy men and women. A total of 24 subjects were tested across three separate experiments. Each experiment used a within-subjects study design that tested eight volunteers to establish the full-range fluence-response relationship between corneal light irradiance and nocturnal plasma melatonin suppression. Each experiment tested one of the three types of fluorescent lamps that differed in their relative emission of light in the short-wavelength end of the visible spectrum between 400 and 500 nm. A hazard analysis, based on national and international eye safety criteria, determined that all light exposures used in this study were safe. Each fluence-response curve demonstrated that increasing corneal irradiances of light evoked progressively increasing suppression of nocturnal melatonin. Comparison of these fluence-response curves supports the hypothesis that polychromatic fluorescent light is more potent for melatonin regulation when enriched in the short-wavelength spectrum.


Assuntos
Ritmo Circadiano/efeitos da radiação , Melatonina/metabolismo , Adulto , Córnea/fisiologia , Feminino , Humanos , Luz , Masculino , Melatonina/sangue , Opsinas/metabolismo , Opsinas de Bastonetes/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA