Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Ecol ; 26(20): 5629-5645, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833696

RESUMO

Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.


Assuntos
Evolução Molecular , Genes MHC da Classe II , Lemur/classificação , Simpatria , Alelos , Animais , Helmintos , Lemur/parasitologia , Polimorfismo Genético , Seleção Genética
2.
BMC Genomics ; 16: 222, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887664

RESUMO

BACKGROUND: Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing. RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma. CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.


Assuntos
Genoma Mitocondrial , Macaca fascicularis/genética , Filogenia , Animais , Ásia , Sudeste Asiático , Análise de Sequência de DNA
3.
Immunogenetics ; 67(4): 229-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687337

RESUMO

The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe's mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.


Assuntos
Cheirogaleidae/genética , Cheirogaleidae/imunologia , Cadeias beta de HLA-DQ/genética , Cadeias beta de HLA-DR/genética , Animais , Sequência de Bases , Madagáscar , Filogenia , Polimorfismo Genético , Seleção Genética , Análise de Sequência de DNA , Homologia de Sequência
4.
Front Immunol ; 5: 600, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506344

RESUMO

Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load.

5.
Nat Med ; 20(12): 1397-400, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25419708

RESUMO

α4ß7 integrin-expressing CD4(+) T cells preferentially traffic to gut-associated lymphoid tissue (GALT) and have a key role in HIV and simian immunodeficiency virus (SIV) pathogenesis. We show here that the administration of an anti-α4ß7 monoclonal antibody just prior to and during acute infection protects rhesus macaques from transmission following repeated low-dose intravaginal challenges with SIVmac251. In treated animals that became infected, the GALT was significantly protected from infection and CD4(+) T cell numbers were maintained in both the blood and the GALT. Thus, targeting α4ß7 reduces mucosal transmission of SIV in macaques.


Assuntos
Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , DNA Viral/análise , Integrinas/antagonistas & inibidores , Mucosa Intestinal/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vagina/efeitos dos fármacos , Animais , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Colo do Útero/virologia , Colo/virologia , Feminino , Íleo/virologia , Integrinas/imunologia , Mucosa Intestinal/imunologia , Jejuno/virologia , Tecido Linfoide/imunologia , Macaca mulatta , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Vagina/imunologia , Carga Viral
6.
BMC Evol Biol ; 14: 176, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25209564

RESUMO

BACKGROUND: The evolutionary history of the Old World monkey tribe Papionini comprising the genera Macaca, Mandrillus, Cercocebus, Lophocebus, Theropithecus, Rungwecebus and Papio is still matter of debate. Although the African Papionini (subtribe Papionina) are generally considered to be the sister lineage to the Asian Papionini (subtribe Macacina), previous studies based on morphological data, nuclear or mitochondrial sequences have shown contradictory phylogenetic relationships among and within both subtribes. To further elucidate the phylogenetic relationships among papionins and to estimate divergence ages we generated mitochondrial genome data and combined them with previously published sequences. RESULTS: Our mitochondrial gene tree comprises 33 papionins representing all genera of the tribe except Rungwecebus. In contrast to most previous studies, the obtained phylogeny suggests a division of the Papionini into three main mitochondrial clades with similar ages: 1) Papio, Theropithecus, Lophocebus; 2) Mandrillus, Cercocebus; and 3) Macaca; the Mandrillus + Cercocebus clade appears to be more closely related to Macaca than to the other African Papionini. Further, we find paraphyletic relationships within the Mandrillus + Cercocebus clade as well as in Papio. Relationships among Theropithecus, Lophocebus and Papio remain unresolved. Divergence ages reveal initial splits within the three mitochondrial clades around the Miocene/Pliocene boundary and differentiation of Macaca species groups occurred on a similar time scale as those found between genera of the subtribe Papionina. CONCLUSION: Due to the largely well-resolved mitochondrial phylogeny, our study provides new insights into the evolutionary history of the Papionini. Results show some contradictory relationships in comparison to previous analyses, notably the paraphyly within the Cercocebus + Mandrillus clade and three instead of only two major mitochondrial clades. Divergence ages among species groups of macaques are similar to those among African Papionini genera, suggesting that diversification of the mitochondrial genome is of a similar magnitude in both subtribes. However, since our mitochondrial tree represents just a single gene tree that most likely does not reflect the true species tree, extensive nuclear sequence data is required to illuminate the true species phylogeny of papionins and to trace possible ancient hybridization events among lineages.


Assuntos
Cercopithecinae/genética , Genes Mitocondriais/genética , Genômica , Animais , DNA Mitocondrial/genética , Evolução Molecular , Filogenia , Especificidade da Espécie
7.
Nature ; 513(7517): 195-201, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25209798

RESUMO

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Assuntos
Genoma/genética , Hylobates/classificação , Hylobates/genética , Cariótipo , Filogenia , Animais , Evolução Molecular , Hominidae/classificação , Hominidae/genética , Humanos , Dados de Sequência Molecular , Retroelementos/genética , Seleção Genética , Terminação da Transcrição Genética
8.
PLoS Pathog ; 10(3): e1003929, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603870

RESUMO

The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8⁺ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4⁺ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a⁺ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses.


Assuntos
Inibidores Enzimáticos/farmacologia , Janus Quinase 3/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral/efeitos dos fármacos , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Crônica , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células Matadoras Naturais/efeitos dos fármacos , Macaca mulatta
9.
J Immunol ; 192(7): 3239-46, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24600031

RESUMO

The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.


Assuntos
Callithrix/imunologia , Genoma/imunologia , Genômica/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Sequência de Aminoácidos , Animais , Callithrix/genética , Cromossomos Artificiais Bacterianos/genética , Mapeamento de Sequências Contíguas , Ordem dos Genes , Genoma/genética , Biblioteca Genômica , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Pseudogenes/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
10.
PLoS One ; 8(9): e75063, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086438

RESUMO

Recent evidence indicates that regulatory small non-coding RNAs are not only components of eukaryotic cells and vesicles, but also reside within a number of different viruses including retroviral particles. Using ultra-deep sequencing we have comprehensively analyzed the content of simian immunodeficiency virions (SIV), which were compared to mock-control preparations. Our analysis revealed that more than 428,000 sequence reads matched the SIV mac239 genome sequence. Among these we could identify 12 virus-derived small RNAs (vsRNAs) that were highly abundant. Beside known retrovirus-enriched small RNAs, like 7SL-RNA, tRNA(Lys3) and tRNA(Lys) isoacceptors, we also identified defined fragments derived from small ILF3/NF90-associated RNA snaR-A14, that were enriched more than 50 fold in SIV. We also found evidence that small nucleolar RNAs U2 and U12 were underrepresented in the SIV preparation, indicating that the relative number or the content of co-isolated exosomes was changed upon infection. Our comprehensive atlas of SIV-incorporated small RNAs provides a refined picture of the composition of retrovirions, which gives novel insights into viral packaging.


Assuntos
RNA Viral/metabolismo , Vírus da Imunodeficiência Símia/genética , Vírion/genética , Sequência de Bases , Linhagem Celular , Exossomos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA não Traduzido/metabolismo , RNA Viral/genética , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
11.
BMC Evol Biol ; 13: 233, 2013 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-24159931

RESUMO

BACKGROUND: Species are the fundamental units in evolutionary biology. However, defining them as evolutionary independent lineages requires integration of several independent sources of information in order to develop robust hypotheses for taxonomic classification. Here, we exemplarily propose an integrative framework for species delimitation in the "brown lemur complex" (BLC) of Madagascar, which consists of seven allopatric populations of the genus Eulemur (Primates: Lemuridae), which were sampled extensively across northern, eastern and western Madagascar to collect fecal samples for DNA extraction as well as recordings of vocalizations. Our data base was extended by including museum specimens with reliable identification and locality information for skull shape and pelage color analysis. RESULTS: Between-group analyses of principal components revealed significant heterogeneity in skull shape, pelage color variation and loud calls across all seven populations. Furthermore, post-hoc statistical tests between pairs of populations revealed considerable discordance among different data sets for different dyads. Despite a high degree of incomplete lineage sorting among nuclear loci, significant exclusive ancestry was found for all populations, except for E. cinereiceps, based on one mitochondrial and three nuclear genetic loci. CONCLUSIONS: Using several independent lines of evidence, our results confirm the species status of the members of the BLC under the general lineage concept of species. More generally, the present analyses demonstrate the importance and value of integrating different kinds of data in delimiting recently evolved radiations.


Assuntos
Lemur/classificação , Lemur/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Feminino , Lemur/anatomia & histologia , Lemuridae/genética , Madagáscar , Masculino , Filogenia , Análise de Componente Principal , Vocalização Animal
12.
PLoS One ; 8(7): e69504, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874967

RESUMO

Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.


Assuntos
Filogenia , Primatas/genética , Animais , Genoma Mitocondrial/genética , Primatas/classificação
13.
PLoS One ; 8(5): e64936, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717676

RESUMO

The expression of killer cell immunoglobulin-like receptors (KIR) on lymphocytes of rhesus macaques and other Old World monkeys was unknown so far. We used our recently established monoclonal anti-rhesus macaque KIR antibodies in multicolour flow cytometry for phenotypic characterization of KIR protein expression on natural killer (NK) cells and T cell subsets of rhesus macaques, cynomolgus macaques, hamadryas baboons, and African green monkeys. Similar to human KIR, we found clonal expression patterns of KIR on NK and T cell subsets in rhesus macaques and differences between individuals using pan-KIR3D antibody 1C7 and antibodies specific for single KIR. Similar results were obtained with lymphocytes from the other studied species. Notably, African green monkeys show only a low frequency of KIR3D expressed on CD8+ αßT cells. Contrasting human NK cells are KIR-positive CD56bright NK cells and frequencies of KIR-expressing NK cells that are independent of the presence of their cognate MHC class I ligands in rhesus macaques. Interestingly, the frequency of KIR-expressing cells and the expression strength of KIR3D are correlated in γδ T cells of rhesus macaques and CD8+ αßT cells of baboons.


Assuntos
Cercopithecidae/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR/metabolismo , Subpopulações de Linfócitos T , Linfócitos T/imunologia , Animais , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Ligantes , Receptores KIR/imunologia
14.
Immunogenetics ; 64(12): 895-913, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22948859

RESUMO

The critical role of major histocompatibility complex (MHC) genes in disease resistance, along with their putative function in sexual selection, reproduction and chemical ecology, make them an important genetic system in evolutionary ecology. Studying selective pressures acting on MHC genes in the wild nevertheless requires population-wide genotyping, which has long been challenging because of their extensive polymorphism. Here, we report on large-scale genotyping of the MHC class II loci of the grey mouse lemur (Microcebus murinus) from a wild population in western Madagascar. The second exons from MHC-DRB and -DQB of 772 and 672 individuals were sequenced, respectively, using a 454 sequencing platform, generating more than 800,000 reads. Sequence analysis, through a stepwise variant validation procedure, allowed reliable typing of more than 600 individuals. The quality of our genotyping was evaluated through three independent methods, namely genotyping the same individuals by both cloning and 454 sequencing, running duplicates, and comparing parent-offspring dyads; each displaying very high accuracy. A total of 61 (including 20 new) and 60 (including 53 new) alleles were detected at DRB and DQB genes, respectively. Both loci were non-duplicated, in tight linkage disequilibrium and in Hardy-Weinberg equilibrium, despite the fact that sequence analysis revealed clear evidence of historical selection. Our results highlight the potential of 454 sequencing technology in attempts to investigate patterns of selection shaping MHC variation in contemporary populations. The power of this approach will nevertheless be conditional upon strict quality control of the genotyping data.


Assuntos
Genes MHC da Classe II/genética , Técnicas de Genotipagem/métodos , Lemur/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Éxons , Loci Gênicos , Lemur/imunologia , Desequilíbrio de Ligação , Madagáscar , Dados de Sequência Molecular , Polimorfismo Genético , Controle de Qualidade
15.
BMC Genomics ; 13: 486, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985096

RESUMO

BACKGROUND: Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein (PrPc) into a pathogenic isoform (PrPSc). It is known that neurodegeneration is often accompanied by the disturbance of cholesterol homeostasis. We have recently identified a set of genes that were upregulated after prion infection of N2a neuronal cells (Bach et al., 2009). RESULTS: We have now used ultra-deep sequencing technology to profile all microRNAs (miRNA) that could be associated with this effect in these N2a cells. Using stringent filters and normalization strategies we identified a small set of miRNAs that were up- or downregulated upon prion infection. Using bioinformatic tools we predicted whether the downregulated miRNAs could target mRNAs that have been previously identified to enhance cholesterol synthesis in these cells. Application of this joint profiling approach revealed that nine miRNAs potentially target cholesterol-related genes. Four of those miRNAs are localized in a miRNA-dense cluster on the mouse X-chromosome. Among these, twofold downregulation of mmu-miR-351 and mmu-miR-542-5p was confirmed by qRT-PCR. The same miRNAs were predicted as putative regulators of the sterol regulatory element-binding factor 2 (Srebf2), the low-density lipoprotein receptor (Ldlr) or the IPP isomerase. CONCLUSIONS: The results demonstrate that joined profiling by ultra-deep sequencing is highly valuable to identify candidate miRNAs involved in prion-induced dysregulation of cholesterol homeostasis.


Assuntos
Colesterol/metabolismo , MicroRNAs/genética , Príons/genética , Isoformas de Proteínas/genética , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase/genética , Camundongos , Príons/metabolismo
16.
Am J Phys Anthropol ; 147(1): 1-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21953032

RESUMO

The Guizhou snub-nosed monkey (Rhinopithecus brelichi) is a primate species endemic to the Wuling Mountains in southern China. With a maximum of 800 wild animals, the species is endangered and one of the rarest Chinese primates. To assess the genetic diversity within R. brelichi and to analyze its genetic population structure, we collected fecal samples from the wild R. brelichi population and sequenced the hypervariable region I of the mitochondrial control region from 141 individuals. We compared our data with those from the two other Chinese snub-nosed species (R. roxellana, R. bieti) and reconstructed their phylogenetic relationships and divergence times. With only five haplotypes and a maximum of 25 polymorphic sites, R. brelichi shows the lowest genetic diversity in terms of haplotype diversity (h), nucleotide diversity (π), and average number of pairwise nucleotide differences (Π). The most recent common ancestor of R. brelichi lived ∼0.36 million years ago (Ma), thus more recently than those of R. roxellana (∼0.91 Ma) and R. bieti (∼1.33 Ma). Phylogenetic analysis and analysis of molecular variance revealed a clear and significant differentiation among the three Chinese snub-nosed monkey species. Population genetic analyses (Tajima's D, Fu's F(s) , and mismatch distribution) suggest a stable population size for R. brelichi. For the other two species, results point in the same direction, but population substructure possibly introduces some ambiguity. Because of the lower genetic variation, the smaller population size and the more restricted distribution, R. brelichi might be more vulnerable to environmental changes or climate oscillations than the other two Chinese snub-nosed monkey species. Am J Phys Anthropol, 2012. © 2011 Wiley Periodicals, Inc.


Assuntos
Colobinae/genética , DNA Mitocondrial/genética , Algoritmos , Análise de Variância , Animais , Teorema de Bayes , China , Colobinae/classificação , Fezes , Genética Populacional , Haplótipos , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Especificidade da Espécie
17.
BMC Evol Biol ; 11: 216, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21777472

RESUMO

BACKGROUND: Although most taxonomists agree that species are independently evolving metapopulation lineages that should be delimited with several kinds of data, the taxonomic practice in Malagasy primates (Lemuriformes) looks quite different. Several recently described lemur species are based solely on evidence of genetic distance and diagnostic characters of mitochondrial DNA sequences sampled from a few individuals per location. Here we explore the validity of this procedure for species delimitation in lemurs using published sequence data. RESULTS: We show that genetic distance estimates and Population Aggregation Analysis (PAA) are inappropriate for species delimitation in this group of primates. Intra- and interspecific genetic distances overlapped in 14 of 17 cases independent of the genetic marker used. A simulation of a fictive taxonomic study indicated that for the mitochondrial D-loop the minimum required number of individuals sampled per location is 10 in order to avoid false positives via PAA. CONCLUSIONS: Genetic distances estimates and PAA alone should not be used for species delimitation in lemurs. Instead, several nuclear and sex-specific loci should be considered and combined with other data sets from morphology, ecology or behavior. Independent of the data source, sampling should be done in a way to ensure a quantitative comparison of intra- and interspecific variation of the taxa in question. The results of our study also indicate that several of the recently described lemur species should be reevaluated with additional data and that the number of good species among the currently known taxa is probably lower than currently assumed.


Assuntos
Variação Genética , Lemur/genética , Animais , Sequência de Bases , Simulação por Computador , DNA Mitocondrial/genética , Lemur/classificação , Dados de Sequência Molecular , Filogenia , Primatas/classificação , Primatas/genética
18.
BMC Evol Biol ; 11: 77, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21435245

RESUMO

BACKGROUND: Colobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera. RESULTS: Gene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing Piliocolobus/Procolobus and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from Piliocolobus/Procolobus into Colobus. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, Semnopithecus diverged first, indicating langur paraphyly. However, unidirectional gene flow from Semnopithecus into Trachypithecus via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene. CONCLUSIONS: Overall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.


Assuntos
Evolução Biológica , Núcleo Celular/genética , Colobinae/genética , DNA Mitocondrial/genética , Hibridização Genética , Filogenia , Elementos Alu , Animais , Mapeamento Cromossômico , Colobinae/classificação , Feminino , Masculino , Análise de Sequência de DNA , Cromossomo X/genética , Cromossomo Y/genética
19.
Nucleic Acids Res ; 39(2): 675-86, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846955

RESUMO

Small nucleolar RNAs (snoRNAs) and microRNAs are two classes of non-protein-coding RNAs with distinct functions in RNA modification or post-transcriptional gene silencing. In this study, we introduce novel insights to RNA-induced gene activity adjustments in human cells by identifying numerous snoRNA-derived molecules with miRNA-like function, including H/ACA box snoRNAs and C/D box snoRNAs. In particular, we demonstrate that several C/D box snoRNAs give rise to gene regulatory RNAs, named sno-miRNAs here. Our data are complementing the increasing number of studies in the field of small RNAs with regulatory functions. In massively deep sequencing of small RNA fractions we identified high copy numbers of sub-sequences from >30 snoRNAs with lengths of ≥18 nt. RNA secondary structure prediction indicated for a majority of candidates a location in predicted stem regions. Experimental analysis revealed efficient gene silencing for 11 box C/D sno-miRNAs, indicating cytoplasmic processing and recruitment to the RNA silencing machinery. Assays in four different human cell lines indicated variations in both the snoRNA levels and their processing to active sno-miRNAs. In addition we show that box D elements are predominantly flanking at least one of the sno-miRNA strands, while the box C element locates within the sequence of the sno-miRNA guide strand.


Assuntos
MicroRNAs/metabolismo , RNA Nucleolar Pequeno/metabolismo , Sequência de Bases , Linhagem Celular , Inativação Gênica , Humanos , Células Jurkat , MicroRNAs/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/química , Linfócitos T/química
20.
BMC Res Notes ; 3: 64, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214803

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are negative regulators of gene expression in multicellular eukaryotes. With the recently completed sequencing of three primate genomes, the study of miRNA evolution within the primate lineage has only begun and may be expected to provide the genetic and molecular explanations for many phenotypic differences between human and non-human primates. FINDINGS: We scanned all three genomes of non-human primates, including chimpanzee (Pan troglodytes), orangutan (Pongo pygmaeus), and rhesus monkey (Macaca mulatta), for homologs of human miRNA genes. Besides sequence homology analysis, our comparative method relies on various postprocessing filters to verify other features of miRNAs, including, in particular, their precursor structure or their occurrence (prediction) in other primate genomes. Our study allows direct comparisons between the different species in terms of their miRNA repertoire, their evolutionary distance to human, the effects of filters, as well as the identification of common and species-specific miRNAs in the primate lineage. More than 500 novel putative miRNA genes have been discovered in orangutan that show at least 85 percent identity in precursor sequence. Only about 40 percent are found to be 100 percent identical with their human ortholog. CONCLUSION: Homologs of human precursor miRNAs with perfect or near-perfect sequence identity may be considered to be likely functional in other primates. The computational identification of homologs with less similar sequence, instead, requires further evidence to be provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA