Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cheminform ; 14(1): 66, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171627

RESUMO

TUCAN is a canonical serialization format that is independent of domain-specific concepts of structure and bonding. The atomic number is the only chemical feature that is used to derive the TUCAN format. Other than that, the format is solely based on the molecular topology. Validation is reported on a manually curated test set of molecules as well as a library of non-chemical graphs. The serialization procedure generates a canonical "tuple-style" output which is bidirectional, allowing the TUCAN string to serve as both identifier and descriptor. Use of the Python NetworkX graph library facilitated a compact and easily extensible implementation.

2.
Front Psychol ; 13: 806163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222194

RESUMO

It is widely recognized that police performance may be hindered by psychophysiological state changes during acute stress. To address the need for awareness and control of these physiological changes, police academies in many countries have implemented Heart-Rate Variability (HRV) biofeedback training. Despite these trainings now being widely delivered in classroom setups, they typically lack the arousing action context needed for successful transfer to the operational field, where officers must apply learned skills, particularly when stress levels rise. The study presented here aimed to address this gap by training physiological control skills in an arousing decision-making context. We developed a Virtual-Reality (VR) breathing-based biofeedback training in which police officers perform deep and slow diaphragmatic breathing in an engaging game-like action context. This VR game consisted of a selective shoot/don't shoot game designed to assess response inhibition, an impaired capacity in high arousal situations. Biofeedback was provided based on adherence to a slow breathing pace: the slower and deeper the breathing, the less constrained peripheral vision became, facilitating accurate responses to the in-game demands. A total of nine male police trainers completed 10 sessions over a 4-week period as part of a single-case experimental ABAB study-design (i.e., alternating sessions with and without biofeedback). Results showed that eight out of nine participants showed improved breathing control in action, with a positive effect on breathing-induced low frequency HRV, while also improving their in-game behavioral performance. Critically, the breathing-based skill learning transferred to subsequent sessions in which biofeedback was not presented. Importantly, all participants remained highly engaged throughout the training. Altogether, our study showed that our VR environment can be used to train breathing regulation in an arousing and active decision-making context.

3.
Front Psychol ; 12: 586553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776830

RESUMO

As part of the Dutch national science program "Professional Games for Professional Skills" we developed a stress-exposure biofeedback training in virtual reality (VR) for the Dutch police. We aim to reduce the acute negative impact of stress on performance, as well as long-term consequences for mental health by facilitating physiological stress regulation during a demanding decision task. Conventional biofeedback applications mainly train physiological regulation at rest. This might limit the transfer of the regulation skills to stressful situations. In contrast, we provide the user with the opportunity to practice breathing regulation while they carry out a complex task in VR. This setting poses challenges from a technical - (real-time processing of noisy biosignals) as well as from a user-experience perspective (multi-tasking). We illustrate how we approach these challenges in our training and hope to contribute a useful reference for researchers and developers in academia or industry who are interested in using biosignals to control elements in a dynamic virtual environment.

4.
Behav Res Methods ; 53(4): 1689-1696, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33528817

RESUMO

NeuroKit2 is an open-source, community-driven, and user-centered Python package for neurophysiological signal processing. It provides a comprehensive suite of processing routines for a variety of bodily signals (e.g., ECG, PPG, EDA, EMG, RSP). These processing routines include high-level functions that enable data processing in a few lines of code using validated pipelines, which we illustrate in two examples covering the most typical scenarios, such as an event-related paradigm and an interval-related analysis. The package also includes tools for specific processing steps such as rate extraction and filtering methods, offering a trade-off between high-level convenience and fine-tuned control. Its goal is to improve transparency and reproducibility in neurophysiological research, as well as foster exploration and innovation. Its design philosophy is centred on user-experience and accessibility to both novice and advanced users.


Assuntos
Processamento de Sinais Assistido por Computador , Software , Humanos , Neurofisiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA