Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957999

RESUMO

Goats are often asymptomatic carriers of Campylobacter, including the foodborne pathogen Campylobacter jejuni. Infections can have significant and economically detrimental health outcomes in both humans and animals. The primary objective of this study was to estimate the prevalence of Campylobacter in U.S. goat herds. Campylobacter species were isolated from 106 of 3,959 individual animals and from 42 of 277 goat operations that participated in fecal sample collection as part of the National Animal Health Monitoring System Goat 2019 study. Weighted animal-level prevalence was 2.3% (SE = 0.5%) and operation prevalence was 13.0% (SE = 3.2%). Animal-level prevalence ranged widely from 0 to 70.0%, however, 52.4% of positive operations (22/42) had only a single isolate. C. jejuni was the most frequently isolated species (68.9%; 73/106), followed by C. coli (29.3%, 31/106). A total of 46.2% (36/78) of viable isolates were pan-susceptible to 8 antimicrobials. Resistance to tetracycline (TET) was observed in 44.9% (35/78) of isolates, while 12.8% (10/78) were resistant to ciprofloxacin (CIP) and nalidixic acid (NAL). Among all isolates, a single resistance profile CIP-NAL-TET was observed in 3.8% (3/78) of isolates. A total of 35 unique sequence types (STs) were identified, 11 of which are potentially new. Multiple C. jejuni STs were observed in 48.1% (13/27) of positive operations. Goats with access to surface water, operations reporting antibiotics in the feed or water (excluding ionophores and coccidiostats), and operations reporting abortions and without postabortion management tasks had significantly greater odds of being Campylobacter positive. This snapshot of the U.S. goat population enriches the limited pool of knowledge on Campylobacter species presence in U.S. goats.

2.
Front Vet Sci ; 11: 1393296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774910

RESUMO

Coxiella burnetii is a bacterial pathogen capable of causing serious disease in humans and abortions in goats. Infected goats can shed C. burnetii through urine, feces, and parturient byproducts, which can lead to infections in humans when the bacteria are inhaled. Goats are important C. burnetii reservoirs as evidenced by goat-related outbreaks across the world. To better understand the current landscape of C. burnetii infection in the domestic goat population, 4,121 vaginal swabs from 388 operations across the United States were analyzed for the presence of C. burnetii by IS1111 PCR as part of the United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services' National Animal Health Monitoring System Goats 2019 Study. In total, 1.5% (61/4121) of swabs representing 10.3% (40/388) (weighted estimate of 7.8, 95% CI 4.4-13.5) of operations were positive for C. burnetii DNA. The quantity of C. burnetii on positive swabs was low with an average Ct of 37.9. Factors associated with greater odds of testing positive included suspected Q fever in the herd in the previous 3 years, the presence of wild deer or elk on the operation, and the utilization of hormones for estrus synchronization. Factors associated with reduced odds of testing positive include the presence of kittens and treatment of herds with high tannin concentrate plants, diatomaceous earth, and tetrahydropyrimidines. In vitro analysis demonstrated an inhibitory effect of the tetrahydropyrimidine, pyrantel pamoate, on the growth of C. burnetii in axenic media as low as 1 µg per mL. The final multivariable logistic regression modeling identified the presence of wild predators on the operation or adjacent property (OR = 9.0, 95% CI 1.3-61.6, p value = 0.0248) as a risk factor for C. burnetii infection.

3.
Prev Vet Med ; 223: 106114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198901

RESUMO

Infection with the bacterium Coxiella burnetii can cause coxiellosis in animals and Q fever in humans. Coxiellosis a consistently underreported infectious disease. The infection can result in reproductive consequences for humans and animals. Ruminants are a reservoir for infection and humans are generally infected via aerosolized secretions, making it a public health concern. Studies of ruminant seroprevalence are generally limited in size and scope. This study determined seroprevalence in a large-scale U.S. population of female goats using serum samples from 7736 does from 24 states. This study identified C. burnetii seroprevalence in the United States domestic goat population. Overall, 14.5 % (SE = 2.3) of does were seropositive and 21.0 % (SE = 2.4) of operations had at least 1 seropositive doe. Further, operation demographics and herd management practices associated with seropositivity were as follows: the suspected or confirmed presence of caprine arthritis encephalitis (CAE), caseous lymphadenitis (CL), Johne's disease, or sore mouth in the herd in the previous 3 years, not cleaning or disinfecting the kidding areas or removing aborting does from other does, allowing visitors to access the kidding areas, and a lower percentage of adult goat inventory that were adult bucks or wethers. Furthermore, goat breed was associated with seropositivity. These data show C. burnetii seroprevalence in the United States and identify operation and animal characteristics and management practices associated with C. burnetii seropositivity. Together, this information can be used to help limit animal transmission, inform public health measures, and help educate and protect individuals working with goats.


Assuntos
Coxiella burnetii , Doenças das Cabras , Febre Q , Doenças dos Ovinos , Humanos , Animais , Masculino , Feminino , Estados Unidos/epidemiologia , Ovinos , Cabras , Estudos Soroepidemiológicos , Prevalência , Doenças das Cabras/epidemiologia , Doenças das Cabras/microbiologia , Febre Q/epidemiologia , Febre Q/veterinária , Febre Q/microbiologia , Ruminantes , Fatores de Risco , Doenças dos Ovinos/epidemiologia
4.
Front Vet Sci ; 10: 1229071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711433

RESUMO

Introduction: The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion: Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms.

5.
Front Vet Sci ; 10: 1229008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559891

RESUMO

Introduction: The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the most geographically extensive and costly animal health event in U.S. history. In 2022 alone, over 57 million commercial and backyard poultry in 47 U.S. states were affected. Over 75% of affected poultry were part of the commercial table egg production sector. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial table egg operations. Univariate and multivariable analyses were conducted to compare farm characteristics, management, and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, sightings of wild waterfowl, mowing or bush hogging vegetation less than 4 times a month, having an off-site method of daily mortality disposal (off-site composting or burial, rendering, or landfill), and wild bird access to feed/feed ingredients at least some of the time. Protective factors included a high level of vehicle washing for trucks and trailers entering the farm (a composite variable that included having a permanent wash station), having designated personnel assigned to specific barns, having a farm entrance gate, and requiring a change of clothing for workers entering poultry barns. Discussion: Study results improve our understanding of risk factors for HPAI infection and control measures for preventing HPAI on commercial U.S. table egg farms.

6.
PLoS One ; 17(6): e0267731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657780

RESUMO

Among one of the key challenges in dairy production is the management of manure in a way that is beneficial for agricultural production, with minimal environmental and public health impacts. Manure management systems (MMS)-the entire system of handling, storage, and application of manure-are diverse in countries with developed dairy industries such as the United States, enabled by a number of different technologies. The ways in which dairy farmers manage manure is driven by varying tradeoffs, including economic, social, and environmental; however, existing research has not examined the relationships between components of MMS. Here we use data from the National Animal Health Monitoring System's Dairy 2014 study to explore the ways in which manure handling, storage, and application are related, using a series of logistic regression models and network associations. We found significant associations between how manure is handled, stored, and applied, especially driven by the consistency of manure. For solid manure, we found highly heterogeneous systems, where farmers may have a suite of alternative manure management strategies available to them, and substitution is viable. Conversely, farms using liquid manure systems have very few substitutes in their MMS, suggesting greater investment in certain infrastructures, which are not easily changed. Such findings have important implications for shifting farmers towards management practices with minimal environmental and public health impacts, demonstrating that not all farm systems are easily changed. We highlight these results in light of current policies, which may not fully capture the relationships across the MMS, and suggest that greater financing may be necessary to shift MMS on some farms. Furthermore, we suggest that different MMS have varying tradeoffs across environmental, social, and economic aspects, which demonstrates that MMS are highly individualized to a given farm's goals and priorities.


Assuntos
Esterco , Leite , Agricultura , Animais , Indústria de Laticínios/métodos , Fazendas , Esterco/análise , Leite/química , Estados Unidos
7.
Prev Vet Med ; 202: 105615, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339769

RESUMO

The global interconnectedness of the pig-production industry and the diversity of foot-and-mouth disease (FMD) viruses (FMDVs) currently circulating, makes modeling disease spread and control in FMD-free areas challenging. However, advances in experimental design and transmission studies create opportunities to strengthen our understanding and ability to model FMD transmission. In the current study, we estimated the duration of defined phases of FMDV infection in pigs by using data from a large collection of controlled in vivo experiments. Because the detection of low-levels of viral RNA does not correspond to infectiousness, an experimentally defined minimum threshold of FMDV RNA shedding in oropharyngeal fluids was used to estimate the onset of infectiousness in experiments in which transmission was not evaluated. Animal-level data were used in Accelerated Failure Time models to assess the effect of experimental design factors in the duration of defined phases of FMDV infection: latent, incubation, pre-clinical infectious, clinical infectious, and total infectious periods. The estimated means of the phases were latent: 25 h (95%CI 21, 29), incubation: 70 h (95%CI 64, 76), pre-clinical infectious: 36 h (95%CI 32, 41), clinical infectious: 265 h (95%CI 258, 272) and total infectious: 282 h (95%CI 273, 290). Virus strains and exposure methods had no significant influence on the duration of latency, incubation, or clinical infectious phases. By contrast, the estimated means of the duration of the pre-clinical infectious and total infectious phases were significantly influenced by virus strains, and the duration of the pre-clinical infectious phase was significantly influenced by exposure methods. This study provides disease parameters based on an estimated threshold of the onset of infectiousness and a probability distribution representing the end of infectiousness. Disease parameters that incorporate experimentally-based quantitative proxies to define phases of FMDV infection may improve planning and preparedness for FMD.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa/prevenção & controle , Doenças dos Suínos/virologia , Animais , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , RNA Viral/análise , Suínos , Doenças dos Suínos/prevenção & controle , Fatores de Tempo , Eliminação de Partículas Virais
8.
PLoS One ; 16(7): e0254998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280230

RESUMO

Scrapie is a slowly progressive neurodegenerative disease of small ruminants caused by an accumulation of an abnormal isoform of prion protein in the central nervous system. Polymorphisms of the prion protein gene (PRNP) strongly modulate scrapie resistance and incubation period in goats. The aim of this study was to identify PRNP genetic variability in goats across the United States. Blood from a total of 6,029 apparent scrapie disease-free goats from 654 operations and 19 breeds were analyzed. Sequencing of PRNP revealed 26 genotypes with different rates based on eight codons. The GG127, RR154, and QQ222 genotypes were predominant and showed a remarkably high rate across all goats. The QK222 and NS146 genotypes, known to be protective against scrapie, were found in 0.6% [with 95% CI = (0.3, 1.2)] and 22.0% [95% CI = (19.1, 25.2)] of goats, respectively. The QK222 genotype was found in 23.1% of Oberhasli goats tested, with 95%CI = (3.9, 68.7)] and 22.0% of Toggenburg goats tested with 95%CI = (9.7, 42.5)], while NS146 was found in 65.5% of Savannah goats tested, with 95%CI = (30.8, 89.9), 36.7% of Boer goats tested, with 95%CI = (33.1, 40.4), 36.3% of Nubian goats tested, with 95%CI = (27.0, 46.7)], and 35.6% of LaMancha goats tested, with 95%CI = (22.8, 50.8%). The MM142 and IM142 genotypes were found more frequently in goats on dairy operations, while the HR143, NS146, and ND146 genotypes were found more frequently in goats on meat operations. Goats in the east region had a higher percentage of goats with RH154, RQ211, and QK222 genotypes than goats in the west region. The results of this study showed high genetic variability of PRNP among the U.S. goat population, with differences by location and breed, and may serve as a rationale for development of goat breeding programs at the national level to mitigate the risk of scrapie.


Assuntos
Variação Genética/genética , Doenças das Cabras/genética , Príons/genética , Scrapie/genética , Animais , Predisposição Genética para Doença , Genótipo , Doenças das Cabras/patologia , Cabras/genética , Polimorfismo Genético/genética , Proteínas Priônicas , Scrapie/patologia , Ovinos/genética
9.
Prev Vet Med ; 171: 104750, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472359

RESUMO

Mycoplasma ovis is a hemotropic bacterium reported to infect sheep, goats, and deer species. Infection in these species can result in anemia, jaundice, and ill-thrift. Although of worldwide distribution, only rare reports of this bacterium in the United States exist. The objectives of this retrospective study were to identify the prevalence and distribution of M. ovis, and identify associated demographic and management risk factors, and reproductive and production outcomes associated with infection on domestic sheep (Ovis aries) operations in the United States. As part of the United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Veterinary Services' National Animal Health Monitoring System (NAHMS) Sheep 2001 and 2011 studies, blood was collected and sera banked from 21,369 ewes in 2001 and 13,128 ewes in 2011. Participating premises were located in 22 states across the United States for each sample year. In 2015 the USDA, Agricultural Research Service, Animal Disease Research Unit received aliquots of these sera, and DNA was extracted and analyzed by PCR for the presence of M. ovis genomic DNA. Flock presence and mean within-flock prevalence of M. ovis were 73.3% and 23.2%, respectively. Model selection using Mallow's Cp Criterion was used to determine which variables significantly affected flock presence and within-flock prevalence. The final flock presence model included flock size, year of blood collection, region, and vaccine administration. The final within-flock prevalence model included year of blood collection, interaction between flock size and region, and interaction between reported abortions and grazing with sheep from other operations. Medium and large operations had a higher flock presence and within-flock prevalence. Flock presence was higher in operations that administered any vaccines. Operations that reported any abortions and grazed with sheep from other operations had a higher within-flock prevalence.


Assuntos
Infecções por Mycoplasma/veterinária , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Criação de Animais Domésticos/métodos , Animais , Mycoplasma/isolamento & purificação , Infecções por Mycoplasma/sangue , Infecções por Mycoplasma/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Fatores de Risco , Ovinos , Doenças dos Ovinos/sangue , Inquéritos e Questionários , Estados Unidos/epidemiologia , United States Department of Agriculture , Vacinação/estatística & dados numéricos
10.
Front Vet Sci ; 6: 263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448297

RESUMO

The objective of the current study was to update parameterization of mathematical simulation models for foot-and-mouth disease (FMD) spread in cattle utilizing recent knowledge of FMD virus (FMDV) pathogenesis and infection dynamics to estimate the duration of distinct phases of FMD. Specifically, the durations of incubation, latent, and infectious periods were estimated for 3 serotypes (O, Asia1, and A) of FMDV, individually and collectively (pan-serotypic). Animal-level data were used in Accelerated Failure Time (AFT) models to estimate the duration of the defined phases of infection, while also investigating the influence of factors related to the experimental design (exposure methods) and virus serotype on disease progression. Substantial influences upon the estimated duration of distinct phases of FMD included the quantity of viral shedding used as a proxy for the onset of infectiousness, virus serotypes, and experimental exposure methods. The use of detection of any viral RNA in nasal secretions as a proxy of infectiousness lengthened the total infectious period compared to use of threshold-based detection. Additionally, the experimental system used to infect the animals also had significant effects on the duration of distinct phases of disease. Overall, the mean [95% Confidence Interval (CI)] durations of pan-serotype disease phases in cattle were estimated to be: incubation phase = 3.6 days (2.7-4.8), latent phase = 1.5 days (1.1-2.1), subclinical infectious phase = 2.2 days (1.5-3.5), clinical infectious phase = 8.5 days (6.2-11.6), and total infectious phase = 10.8 days (8.2-14.2). This study highlights the importance of identifying appropriate proxy measures to define the onset and duration of infectiousness in FMDV-infected cattle in the absence of actual transmission data. Additionally, it is demonstrated herein that factors associated with experimental design, such as virus exposure methods, may significantly affect disease progression in individual animals and should be considered when data is extrapolated from experimental studies. Given limitations in experimental data availability, pan-serotypic parameters which include all routes of exposure and a threshold-defined onset of infectiousness may be the most robust parameters for exploratory disease spread modeling approaches, when information on the specific virus of interest is not available.

11.
Prev Vet Med ; 168: 30-38, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31097121

RESUMO

Association of Mycoplasma ovipneumoniae with pneumonia in domestic small ruminants has been described in Europe, Asia, and New Zealand but has received less attention in the United States. In 2011, the US Department of Agriculture's National Animal Health Monitoring System detected M. ovipneumoniae shedding in 88% of 453 domestic sheep operations tested in 22 states that accounted for 85.5% of US ewe inventory in 2001. We evaluated factors associated with M. ovipneumoniae infection presence and prevalence, and we compared health, lamb production, and ewe losses in infected and uninfected operations. M. ovipneumoniae detection was more common in larger operations than in smaller operations. Both likelihood of detection (at the operation level) and within-operation prevalence were higher in operations with more open management practices than in operations with more closed management practices. M. ovipneumoniae-positive operations showed significantly lower lambing rates and lower rates of lamb survival to weaning after accounting for differences in operation size and management practice. While its effect on any single rate was not particularly large, in aggregate we estimated that M. ovipneumoniae presence was associated with an approximately 4.3% reduction in annual lamb production.


Assuntos
Mycoplasma ovipneumoniae , Pneumonia por Mycoplasma/veterinária , Doenças dos Ovinos/microbiologia , Agricultura , Animais , Feminino , Pneumonia por Mycoplasma/epidemiologia , Prevalência , Fatores de Risco , Ovinos , Doenças dos Ovinos/economia , Doenças dos Ovinos/epidemiologia , Estados Unidos/epidemiologia
12.
Sci Rep ; 9(1): 2707, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804426

RESUMO

The current investigation applied a Bayesian modeling approach to a unique experimental transmission study to estimate the occurrence of transmission of foot-and-mouth disease (FMD) during the incubation phase amongst group-housed pigs. The primary outcome was that transmission occurred approximately one day prior to development of visible signs of disease (posterior median 21 hours, 95% CI: 1.1-45.0). Updated disease state durations were incorporated into a simulation model to examine the importance of addressing preclinical transmission in the face of robust response measures. Simulation of FMD outbreaks in the US pig production sector demonstrated that including a preclinical infectious period of one day would result in a 40% increase in the median number of farms affected (166 additional farms and 664,912 pigs euthanized) compared to the scenario of no preclinical transmission, assuming suboptimal outbreak response. These findings emphasize the importance of considering transmission of FMD during the incubation phase in modeling and response planning.


Assuntos
Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/transmissão , Febre Aftosa/virologia , Animais , Teorema de Bayes , Bovinos , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Suínos
13.
Front Vet Sci ; 5: 167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079340

RESUMO

The quantitative relationship between the exposure dose of foot-and-mouth disease virus (FMDV) and subsequent infection dynamics has been demonstrated through controlled inoculation studies in various species. However, similar quantitation of viral doses has not been achieved during contact exposure experiments due to the intrinsic difficulty of measuring the virus quantities exchanged between animals. In the current study, novel modeling techniques were utilized to investigate FMDV infection dynamics in groups of pigs that had been contact-exposed to FMDV-infected donors shedding varying levels of virus, as well as in pigs inoculated via the intra-oropharyngeal (IOP) route. Estimated virus exposure doses were modeled and were found to be statistically significantly associated with the dynamics of FMDV RNA detection in serum and oropharyngeal fluid (OPF), and with the time to onset of clinical disease. The minimum estimated shedding quantity in OPF that defined infectiousness of donor pigs was 6.55 log10 genome copy numbers (GCN)/ml (95% CI 6.11, 6.98), which delineated the transition from the latent to infectious phase of disease which occurred during the incubation phase. This quantity corresponded to a minimum estimated exposure dose of 5.07 log10 GCN/ml (95% CI 4.25, 5.89) in contact-exposed pigs. Thus, we demonstrated that a threshold quantity of FMDV detection in donor pigs was necessary in order to achieve transmission by direct contact. The outcomes from this investigation demonstrate that variability of infection dynamics which occurs during the progression of FMD in naturally exposed pigs can be partially attributed to variations in exposure dose. Moreover, these modeling approaches for dose-quantitation may be retrospectively applied to contact-exposure experiments or field scenarios. Hence, robust information could be incorporated into models used to evaluate FMD spread and control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA