Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Phys Chem B ; 128(3): 684-697, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38226860

RESUMO

Metal ions play crucial roles in protein- and ligand-mediated interactions. They not only act as catalysts to facilitate biological processes but are also important as protein structural elements. Accurately predicting metal ion interactions in computational studies has always been a challenge, and various methods have been suggested to improve these interactions. One such method is the 12-6-4 Lennard-Jones (LJ)-type nonbonded model. Using this model, it has been possible to successfully reproduce the experimental properties of metal ions in aqueous solution. The model includes induced dipole interactions typically ignored in the standard 12-6 LJ nonbonded model. In this we expand the applicability of this model to metal ion-carboxylate interactions. Using 12-6-4 parameters that reproduce the solvation free energies of the metal ions leads to an overestimation of metal ion-acetate interactions, thus, prompting us to fine-tune the model to specifically handle the latter. We also show that the standard 12-6 LJ model significantly falls short in reproducing the experimental binding free energy between acetate and 11 metal ions (Ni(II), Mg(II), Cu(II), Zn(II), Co(II), Cu(I), Fe(II), Mn(II), Cd(II), Ca(II), and Ag(I)). In this study, we describe optimized C4 parameters for the 12-6-4 LJ nonbonded model to be used with three widely employed water models (Transferable Intermolecular Potential with 3 Points (TIP3P), Simple Point Charge Extended (SPC/E), and Optimal Point Charge (OPC) water models). These parameters can accurately match the experimental binding free energy between 11 metal ions and acetate. These parameters can be applied to the study of metalloproteins and transition metal ion channels and transporters, as acetate serves as a representative of the negatively charged amino acid side chains from aspartate and glutamate.

2.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175249

RESUMO

Dispersion-inclusive density functional theory (DFT) methods have unequivocally demonstrated improved performances with respect to standard DFT approximations for modeling large and extended molecular systems at the quantum mechanical level. Yet, in some cases, disagreements with highly accurate reference calculations, such as CCSD(T) and quantum Monte Carlo (MC) calculations, still remain. Furthermore, the application of general-purpose corrections, such as the popular Grimme's semi-classical models (DFT-D), to different Kohn-Sham exchange-correlation functionals sometimes leads to variable and inconsistent results, which recommend a careful prior evaluation. In a recent study, we proposed a simple optimization protocol for enhancing the accuracy of these DFT-D methods by following an alternative and system-specific approach. Here, adopting the same computational strategy, we show how the accurate MC intermolecular interactions of a large set of water clusters of variable sizes (i.e., 300 (H2O)n structures, n = 9, 15, 27) can be reproduced remarkably well by dispersion-corrected DFT models (i.e., B3LYP-D4, PBE-D4, revPBE(0)-D4) upon re-optimization, reaching a mean absolute error per monomer of ~0.1 kcal/mol. Hence, the obtained results support the use of this procedure for fine-tuning tailored DFT-D models for the accurate description of targeted molecular systems.

3.
Front Mol Biosci ; 9: 933924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959458

RESUMO

Morphological analysis of protein channels is a key step for a thorough understanding of their biological function and mechanism. In this respect, molecular dynamics (MD) is a very powerful tool, enabling the description of relevant biological events at the atomic level, which might elude experimental observations, and pointing to the molecular determinants thereof. In this work, we present a computational geometry-based approach for the characterization of the shape and dynamics of biological ion channels or pores to be used in combination with MD trajectories. This technique relies on the earliest works of Edelsbrunner and on the NanoShaper software, which makes use of the alpha shape theory to build the solvent-excluded surface of a molecular system in an aqueous solution. In this framework, a channel can be simply defined as a cavity with two entrances on the opposite sides of a molecule. Morphological characterization, which includes identification of the main axis, the corresponding local radius, and the detailed description of the global shape of the cavity, is integrated with a physico-chemical description of the surface facing the pore lumen. Remarkably, the possible existence or temporary appearance of fenestrations from the channel interior towards the outer lipid matrix is also accounted for. As a test case, we applied the present approach to the analysis of an engineered protein channel, the mechanosensitive channel of large conductance.

4.
J Chem Theory Comput ; 18(5): 3164-3173, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471007

RESUMO

Ion microsolvation is a basic, yet fundamental, process of ionic solutions underlying many relevant phenomena in either biological or nanotechnological applications, such as solvent reorganization energy, ion transport, catalytic activity, and so on. As a consequence, it is a topic of extensive investigations by various experimental techniques, ranging from X-ray diffraction to NMR relaxation and from calorimetry to vibrational spectroscopy, and theoretical approaches, especially those based on molecular dynamics (MD) simulations. The conventional microscopic view of ion solvation is usually provided by a "static" cluster model representing the first ion-solvent coordination shell. Despite the merits of such a simple model, however, ion coordination in solution should be better regarded as a complex population of dynamically interchanging molecular configurations. Such a more comprehensive view is more subtle to characterize and often elusive to standard approaches. In this work, we report on an effective computational strategy aiming at providing a detailed picture of solvent coordination and exchange around aqua ions, thus including the main structural, thermodynamic, and dynamic properties of ion microsolvation, such as the most probable first-shell complex structures, the corresponding free energies, the interchanging energy barriers, and the solvent-exchange rates. Assuming the solvent coordination number as an effective reaction coordinate and combining MD simulations with enhanced sampling and master-equation approaches, we propose a stochastic model suitable for properly describing, at the same time, the thermodynamics and kinetics of ion-water coordination. The model is successfully tested toward various divalent ions (Ca2+, Zn2+, Hg2+, and Cd2+) in aqueous solution, considering also the case of a high ionic concentration. Results show a very good agreement with those issuing from brute-force MD simulations, when available, and support the reliable prediction of rare ion-water complexes and slow water exchange rates not easily accessible to usual computational methods.


Assuntos
Simulação de Dinâmica Molecular , Água , Íons/química , Solventes , Termodinâmica , Água/química
5.
Phys Chem Chem Phys ; 24(4): 2491-2503, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023509

RESUMO

For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered to be very suitable starting materials, showing enhanced chemical reactivity with respect to pristine graphene, in addition to suitable electronic properties (i.e., tunable band gap). Among other chemical processes, a suitable way to obtain surface decoration of graphene is through a direct one-step Diels-Alder (DA) reaction, e.g. through the use of dienophile or diene moieties. However, the feasibility and extent of decoration largely depends on the specific graphene microstructure that in the case of rGO sheets is not easy to control and generally presents a high degree of inhomogeneity owing to various on-plane functionalization (e.g., epoxide and hydroxyl groups) or in-plane lattice defects. In an effort to gain some insights into the covalent functionalization of variably reduced GO samples, we present a combined experimental and theoretical study on the DA cycloaddition reaction of maleimide, a dienophile functional unit well-suited for chemical conjugation of polymers and macromolecules. In particular, we considered both mildly and strongly reduced GOs. Using thermogravimetry, Raman and X-Ray photoelectron spectroscopy, and elemental analysis we show evidence of variable chemical reactivity of rGO as a function of the residual oxygen content. Moreover, from quantum mechanical calculations carried out at the DFT level on different graphene reaction sites, we provide a more detailed molecular view to interpret experimental findings and to assess the reactivity series of different graphene modifications.

6.
J Phys Chem B ; 126(2): 480-491, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35001625

RESUMO

An integrated theoretical/experimental strategy has been applied to the study of environmental effects on the spectroscopic parameters of 4-(diphenylamino)phtalonitrile (DPAP), a fluorescent molecular rotor. The computational part starts from the development of an effective force field for the first excited electronic state of DPAP and proceeds through molecular dynamics simulations in solvents of different polarities toward the evaluation of Stokes shifts by quantum mechanics/molecular mechanics (QM/MM) approaches. The trends of the computed results closely parallel the available experimental results thus giving confidence to the interpretation of new experimental studies of the photophysics of DPAP in lipid bilayers. In this context, results show unambiguously that both flexible dihedral angles and global rotations are significantly retarded in a cholesterol/DPPC lipid matrix with respect to the DOPC matrix, thus confirming the sensitivity of DPAP to probe different environments and, therefore, its applicability as a probe for detecting different structures and levels of plasma membrane organization.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Bicamadas Lipídicas , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Análise Espectral
7.
Phys Chem Chem Phys ; 23(44): 25170-25179, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730143

RESUMO

Photoresponsive azobenzene-modified DNA (RNA) has become a very fruitful material for nanotechnology due to the capability of switching on and off hybridization (i.e., duplex formation) in smart nanostructures. This nanomaterial exploits the well-known azobenzene trans/cis photo-isomerization. In fact, it has been found that DNA tethered with trans-azobenzene shows normal nucleic acid recognition and hybridization, while the cis form destabilizes the duplex configuration, eventually leading to DNA unzipping. However, while the working principle of the light-triggered DNA dehybridization is apparent, specific details of this mechanism still remain elusive to experiments. Previous in silico studies successfully addressed some aspects (e.g., local structural effects, thermal stability, and early events of azobenzene photoisomerization) of this challenging molecular process characterized by timescales spanning several orders of magnitude, from picoseconds (i.e., azobenzene photoisomerization) to micro- and milli-seconds (i.e., complete strand detachment). In this work, inspired by a recent report by Asanuma and coworkers, we focus on the local and cooperativity effects played by multiple azobenzene units on a 10-mer azobenzene-modified DNA duplex. Using molecular dynamics (MD) simulations, we investigated nine systems equipped with a variable number (from 1 to 7) of photoswitch units and different configurations, focusing our analysis on the initial events (from few ps to hundreds of ns) characterizing DNA destabilization upon trans-to-cis isomerization, such as hydrogen bonding breakage and base pair misalignment. Results highlight, on one hand, the local effects of single azobenzene units on DNA duplex structure and, on the other hand, the cooperative role that multiple photoswitches show in enhancing and accelerating DNA dehybridization following trans-to-cis conversion, in agreement with previously reported data and observations.


Assuntos
Compostos Azo/química , DNA/química , Simulação de Dinâmica Molecular , Hibridização de Ácido Nucleico , Processos Fotoquímicos
8.
J Phys Chem A ; 125(48): 10475-10484, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34843249

RESUMO

Grimme's dispersion-corrected density functional theory (DFT-D) methods have emerged among the most practical approaches to perform accurate quantum mechanical calculations on molecular systems ranging from small clusters to microscopic and mesoscopic samples, i.e., including hundreds or thousands of molecules. Moreover, DFT-D functionals can be easily integrated into popular ab initio molecular dynamics (MD) software packages to carry out first-principles condensed-phase simulations at an affordable computational cost. Here, starting from the well-established D3 version of the dispersion-correction term, we present a simple protocol to improve the accurate description of the intermolecular interactions of molecular clusters of growing size, considering acetonitrile as a test case. Optimization of the interaction energy was performed with reference to diffusion quantum Monte Carlo calculations, successfully reaching the same inherent accuracy of the latter (statistical error of ∼0.1 kcal/mol per molecule). The refined DFT-D3 model was then used to perform ab initio MD simulations of liquid acetonitrile, again showing significant improvements toward available experimental data with respect to the default correction.

9.
Chemistry ; 27(64): 16049-16055, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34494672

RESUMO

Tetracyanobuta-1,3-diene (TCBD) is a powerful and versatile electron-acceptor moiety widely used for the preparation of electroactive conjugates. While many reports addressing its electron-accepting capability have appeared in the literature, significantly scarcer are those dealing with its chemical modification, a relevant topic which allows to broaden the chemical space of this interesting functional unit. Here, we report on the first example of a high-yielding cyano-Diels-Alder (CDA) reaction between TCBD, that is, where a nitrile group acts as a dienophile, and an anthryl moiety, that is, acting as a diene. The resulting anthryl-fused-TCBD derivative, which structure was unambiguously identified by X-ray diffraction, shows high thermal stability, remarkable electron-accepting capability, and interesting electronic ground- and excited-state features, as characterized by a thorough theoretical, electrochemical, and photophysical investigation. Moreover, a detailed kinetic analysis of the intramolecular CDA reaction transforming the anthryl-TCBD-based reactant into the anthryl-fused-TCBD product was carried out at different temperatures.

10.
Angew Chem Int Ed Engl ; 59(47): 21224-21229, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32755002

RESUMO

In recent years, several tetracyanobuta-1,3-diene (TCBD) conjugates have been prepared by linking the tetracyano unit to various electroactive moieties. These push-pull conjugates, besides showing interesting physicochemical properties, are axially chiral, a feature arising from the restricted rotation around the central bond of the butadiene. Yet, only in a few cases, separation and isolation of the enantiomers have been successfully achieved, owing to the configurational lability of the corresponding enantiopure species. Herein, we report the first example of photo- and electroactive TCBD-based derivatives showing unprecedented configurational stability and a peculiar light-triggered enantiomer conversion mechanism enabled by triple-state photogeneration. These systems represent a nice addition to the fast-increasing arsenal of artificial, light-controllable molecular switches.

11.
Biomolecules ; 10(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570991

RESUMO

8-hydroxyquinoline-2-carboxylic acid (8-HQA) has been found in high concentrations (0.5-5.0 mmol·dm-3) in the gut of Noctuid larvae (and in a few other lepidopterans), in which it is proposed to act as a siderophore. Since it is known that many natural siderophores are also involved in the uptake and metabolism of other essential elements than iron, this study reports some results on the investigation of 8-HQA interactions with molybdate (MoO42-, i.e., the main molybdenum form in aqueous environments), in order to understand the possible role of this ligand as molybdophore. A multi-technique approach has been adopted, in order to derive a comprehensive set of information necessary to assess the chemical speciation of the 8-HQA/MoO42- system, as well as the coordination behavior and the sequestering ability of 8-HQA towards molybdate. Chemical speciation studies have been performed in KCl(aq) at I = 0.2 mol·dm-3 and T = 298.15 K by ISE-H+ (glass electrode) potentiometric and UV/Vis spectrophotometric titrations. CV (Cyclic Voltammetry), DP-ASV (Differential Pulse-Anodic Stripping Voltammetry), ESI-MS experiments and quantum mechanical calculations have been also performed to derive information about the nature and possible structure of species formed. These results are also compared with those reported for the 8-HQA/Fe3+ system in terms of chemical speciation and sequestering ability of 8-HQA.


Assuntos
Hidroxiquinolinas/química , Molibdênio/química , Teoria da Densidade Funcional , Compostos Férricos/química , Soluções , Água/química
12.
Phys Chem Chem Phys ; 21(45): 25290-25301, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701097

RESUMO

The voltage-gated potassium channel Kv4.3 plays a vital role in shaping the timing, frequency, and backpropagation of electrical signals in the brain and heart by generating fast transient currents at subthreshold membrane potentials in repetitive firing neurons. To achieve its physiological function, Kv4.3 is assisted by auxiliary ß-subunits that become integral parts of the native A-type potassium channels, among which there are the Kv channel-interacting proteins (KChIPs). KChIPs are a family of cytosolic proteins that, when coexpressed with Kv4, lead to higher current density, modulation of channel inactivation and faster recovery from inactivation, while the loss of KChIP function may lead to severe pathological states. Recently, the structural basis of the KChIP1-Kv4.3 interaction was reported by using two similar X-ray crystallographic structures, which supported a crucial role for KChIP1 in enhancing the stability of the Kv4.3 tetrameric assembly, thus helping the trafficking of the channel to the plasma membrane. Here, we investigate through fully atomistic simulations the structure and stability of the human Kv4.3 tetramerization (T1) domain in complex with KChIP1 upon specific mutations located in the first and second interfaces of the complex, as compared to the wild-type (WT). Our results nicely complement the available structural and biophysical information collected so far on these complex variants. In particular, the degree of structural deviations and energetic instability, from small to substantial, observed in these variants with respect to the WT model seems to parallel well the level of channel dysfunction known from electrophysiology data. Our simulations provide an octameric structure of the WT KChIP1-Kv4.3 assembly very similar to the known crystal structures, and, at the same time, highlight the importance of a previously overlooked site of interaction between KChIP1 and the Kv4.3 T1 domain.


Assuntos
Simulação por Computador , Proteínas Interatuantes com Canais de Kv/química , Canais de Potássio Shal/química , Cristalografia por Raios X , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Modelos Moleculares , Mutação , Canais de Potássio Shal/genética
13.
J Membr Biol ; 252(4-5): 227-240, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332471

RESUMO

Fluorescent probes are widely employed to label lipids for the investigation of structural and dynamic properties of model and cell membranes through optical microscopy techniques. Although the effect of tagging a lipid with an organic dye is generally assumed to be negligible, optically modified lipids can nonetheless affect the local lipid structure and, in turn, the lipid lateral mobility. To better assess this potential issue, all-atom (MD) molecular dynamics simulations have been performed to study structural and dynamic effects in a model DOPC membrane in the presence of a standard Rhodamine B-labeled DOPE lipid (RHB) as a function of temperature, i.e., 293 K, 303 K, and 320 K. As the temperature is increased, we observe similar changes in the structural properties of both pure DOPC and RHB-DOPC lipid bilayers: an increase of the area per lipid, a reduction of the membrane thickness and a decrease of lipid order parameters. The partial density profile of the RHB headgroups and their orientation within the lipid bilayer confirm the amphiphilic nature of the RHB fluorescent moiety, which mainly partitions in the DOPC glycerol backbone region at each temperature. Moreover, at all temperatures, our results on lipid lateral diffusion support a non-neutral role of the dye with respect to the unlabeled lipid mobility, thus suggesting important implications for optical microscopy studies of lipid membranes.


Assuntos
Simulação por Computador , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Rodaminas/química
14.
Sci Rep ; 9(1): 1508, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728410

RESUMO

Lipid lateral diffusion in membrane bilayers is a fundamental process exploited by cells to enable complex protein structural and dynamic reorganizations. For its importance, lipid mobility in both cellular and model bilayers has been extensively investigated in recent years, especially through the application of time-resolved, fluorescence-based, optical microscopy techniques. However, one caveat of fluorescence techniques is the need to use dye-labeled variants of the lipid of interest, thus potentially perturbing the structural and dynamic properties of the native species. Generally, the effect of the dye/tracer molecule is implicitly assumed to be negligible. Nevertheless, in view of the widespread use of optically modified lipids for studying lipid bilayer dynamics, it is highly desirable to well assess this point. Here, fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations have been combined together to uncover subtle structural and dynamic effects in DOPC planar membranes enriched with a standard Rhodamine-labeled lipid. Our findings support a non-neutral role of the dye-labeled lipids in diffusion experiments, quantitatively estimating a decrease in lipid mobility of up to 20% with respect to the unlabeled species. Moreover, results highlight the existing interplay between dye concentration, lipid lateral diffusion and membrane permeability, thus suggesting possible implications for future optical microscopy studies of biophysical processes occurring at the membrane level.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Biologia Computacional , Difusão , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Microscopia Confocal , Espectrometria de Fluorescência
15.
Phys Chem Chem Phys ; 19(45): 30590-30602, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29115317

RESUMO

Fluorescent molecular rotors (FMRs) belong to an important class of environment-sensitive dyes capable of acting as nanoprobes in the measurement of viscosity and polarity of their micro-environment. FMRs have found widespread applications in various research fields, ranging from analytical to biochemical sciences, for example in intracellular imaging studies or in volatile organic compound detection. Here, a computational investigation of a recently proposed FMR, namely 4-(diphenylamino)phthalonitrile (DPAP), in various chemical environments is presented. A purposely developed molecular mechanics force field is proposed and then applied to simulate the rotor in a high- and low-polar solvent (i.e., acetonitrile, tetrahydrofuran, o-xylene and cyclohexane), a polymer matrix and a lipid membrane. Subtle effects of the molecular interactions with the embedding medium, the structural fluctuations of the rotor and its rotational dynamics are analyzed in some detail. The results correlate with a previous work, thus supporting the reliability of the model, and provide further insights into the environment-specific properties of the dye. In particular, it is shown how molecular diffusion and rotational correlation times of the FMR are affected by the surrounding medium and how the molecular orientation of the dye becomes anisotropic once immersed in the lipid bilayer. Moreover, a qualitative correlation between the FMR rotational dynamics and the fluorescence lifetime is detected, a result in line with the observed viscosity dependence of its emission. Finally, optical absorption spectra are computed and successfully compared with their experimental counterparts.

16.
Phys Chem Chem Phys ; 19(40): 27603-27610, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28980686

RESUMO

It is widely accepted that endocytosis mediates the uptake of cationic cell penetrating peptides (CPPs) at relatively low concentrations (i.e. nano- to micromolar), while direct transduction across the plasma membrane comes into play at higher concentrations (i.e. micro- to millimolar). This latter process appears to depend on peptide-driven cellular processes, which in turn may induce local perturbations of plasma-membrane composition and/or integrity, and to be favored by peptide aggregation, especially into dimers. Besides, in most studies CPPs are tethered to fluorescent dyes in order to track peptide transduction events under the microscope, although often overlooking the possible role played by the dyes in assisting translocation. In an effort to provide some insights into the transduction process, here we report on a molecular dynamics (MD) simulation study of a prototype of the CPP family, namely the Tat11 arginine-rich motif. To be specific, the translocation of Tat11 across a purposely-created membrane pore, either or not covalently-linked to the tetramethylrhodamine-5-maleimide (TAMRA) dye and in both its monomeric and dimeric form, is analyzed in some detail. Results from several unconstrained and steered MD simulations, as well as energy decomposition analysis, nicely support the latest experimental evidence and help to shed light on key factors enabling peptide transduction. In particular, our study highlights the much slower translocation kinetics of Tat11 dimer in comparison to the single peptide, and therefore its enhanced capability to stabilize membrane pores. Notably, it also shows how TAMRA has overall negligible kinetic and energetic effects on peptide transduction, yet it promotes this process indirectly by favoring peptide aggregation.

17.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3154-3163, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27474202

RESUMO

BACKGROUND: The bacterial proteins IscS, IscU and CyaY, the bacterial orthologue of frataxin, play an essential role in the biological machine that assembles the prosthetic FeS cluster groups on proteins. They form functionally binary and ternary complexes both in vivo and in vitro. Yet, the mechanism by which they work remains unclear. METHODS: We carried out extensive molecular dynamics simulations to understand the nature of their interactions and the role of dynamics starting from the crystal structure of a IscS-IscU complex and the experimentally-based model of a ternary IscS-IscU-CyaY complex and used nuclear magnetic resonance to experimentally test the interface. RESULTS: We show that, while being firmly anchored to IscS, IscU has a pivotal motion around the interface. Our results also describe how the catalytic loop of IscS can flip conformation to allow FeS cluster assembly. This motion is hampered in the ternary complex explaining its inhibitory properties in cluster formation. CONCLUSIONS: We conclude that the observed 'fluid' IscS-IscU interface provides the binary complex with a functional adaptability exploited in partner recognition and unravels the molecular determinants of the reported inhibitory action of CyaY in the IscS-IscU-CyaY complex explained in terms of the hampering effect on specific IscU-IscS movements. GENERAL SIGNIFICANCE: Our study provides the first mechanistic basis to explain how the IscS-IscU complex selects its binding partners and supports the inhibitory role of CyaY in the ternary complex.


Assuntos
Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Biocatálise , Espectroscopia de Ressonância Magnética , Estabilidade Proteica , Estrutura Secundária de Proteína , Eletricidade Estática
18.
J Biol Chem ; 291(49): 25617-25628, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27756844

RESUMO

Ferritin molecular cages are marvelous 24-mer supramolecular architectures that enable massive iron storage (>2000 iron atoms) within their inner cavity. This cavity is connected to the outer environment by two channels at C3 and C4 symmetry axes of the assembly. Ferritins can also be exploited as carriers for in vivo imaging and therapeutic applications, owing to their capability to effectively protect synthetic non-endogenous agents within the cage cavity and deliver them to targeted tissue cells without stimulating adverse immune responses. Recently, X-ray crystal structures of Fe2+-loaded ferritins provided important information on the pathways followed by iron ions toward the ferritin cavity and the catalytic centers within the protein. However, the specific mechanisms enabling Fe2+ uptake through wild-type and mutant ferritin channels is largely unknown. To shed light on this question, we report extensive molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements that characterize the transport properties and translocation mechanism of Fe2+ through the two ferritin channels, using the wild-type bullfrog Rana catesbeiana H' protein and some of its variants as case studies. We describe the structural features that determine Fe2+ translocation with atomistic detail, and we propose a putative mechanism for Fe2+ transport through the channel at the C3 symmetry axis, which is the only iron-permeable channel in vertebrate ferritins. Our findings have important implications for understanding how ion permeation occurs, and further how it may be controlled via purposely engineered channels for novel biomedical applications based on ferritin.


Assuntos
Proteínas de Anfíbios/química , Ferritinas/química , Ferro/química , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Cristalografia por Raios X , Ferritinas/genética , Ferritinas/metabolismo , Ferro/metabolismo , Domínios Proteicos , Rana catesbeiana
19.
Phys Chem Chem Phys ; 18(30): 20389-98, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27402118

RESUMO

Non-coded α-amino acids, originally exploited by nature, have been successfully reproduced by recent synthetic strategies to confer special structural and functional properties to small peptides. The most known and well-studied atypical residue is α-aminoisobutyric acid (Aib), which is contained in a fairly large number of peptides with known antibiotic effects. Here, we report on a molecular dynamics (MD) study of a series of homooligopeptides based on α-aminoisobutyric acid (Aib) with increasing length (Ac-(Aib)n-NMe, n = 5, 6, 7 and 10) and at various temperatures, employing a recent extension of the AMBER force field tailored for the Aib residue. Solvent effects have been analyzed by comparative MD simulations of a heptapeptide in water and dimethylsulfoxide at different temperatures. Our results show that the preference for the 310- and/or α-helix structures, which typically characterize Aib based peptides, is finely tuned by several factors including the chain length, temperature and solvent nature. While the transitions between intra-molecular i → i + 3 and i → i + 4 hydrogen bonds characterizing 310 and α-helices, respectively, are rather fast in small peptides (in the picosecond timescale), our analysis shows that the above physical and chemical factors modulate the relative equilibrium populations of the two helical structures. The obtained results nicely agree with available experimental data and support the use of the new force field for modeling Aib containing peptides.

20.
Biochim Biophys Acta ; 1858(4): 689-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26744229

RESUMO

In recent years, engineered biological pores responsive to external stimuli have been fruitfully used for various biotechnological applications. Moreover, the strategy of tethering photo-switchable moieties into biomolecules has provided an unprecedented temporal control of purposely designed nanodevices, as demonstrated, for example, by the light-mediated regulation of the activity of enzymes and biochannels. Inspired by these advancements, we propose here a de novo designed nanodevice featuring the α-hemolysin (αHL) membrane channel purposely functionalized by an artificial "on/off" molecular switch. The switch, which is based on the photo-isomerization of the azobenzene moiety, introduces a smart nano-valve into the natural non-gated pore to confer tunable transport properties. We validated through molecular dynamics simulations and free energy calculations the effective inter-conversion of the engineered αHL pore between two configurations corresponding to an "open" and a "closed" form. The reported switchable translocation of a single-stranded DNA fragment under applied voltage supports the promising capabilities of this nanopore prototype in view of molecular sensing, detection and delivery applications at single-molecule level.


Assuntos
DNA de Cadeia Simples/química , Proteínas Hemolisinas/química , Engenharia de Proteínas , Técnicas Biossensoriais , DNA de Cadeia Simples/isolamento & purificação , Proteínas Hemolisinas/genética , Luz , Simulação de Dinâmica Molecular , Nanoporos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA