Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Mol Cell Cardiol ; 44(2): 293-303, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18182166

RESUMO

Mutations in the lamin A/C (LMNA) gene, which encodes nuclear membrane proteins, cause a variety of human conditions including dilated cardiomyopathy (DCM) with associated cardiac conduction system disease. To investigate mechanisms responsible for electrophysiologic and myocardial phenotypes caused by dominant human LMNA mutations, we performed longitudinal evaluations in heterozygous Lmna(+/-) mice. Despite one normal allele, Lmna(+/-) mice had 50% of normal cardiac lamin A/C levels and developed cardiac abnormalities. Conduction system function was normal in neonatal Lmna(+/-) mice but, by 4 weeks of age, atrioventricular (AV) nodal myocytes had abnormally shaped nuclei and active apoptosis. Telemetric and in vivo electrophysiologic studies in 10-week-old Lmna(+/-) mice showed AV conduction defects and both atrial and ventricular arrhythmias, analogous to those observed in humans with heterozygous LMNA mutations. Isolated myocytes from 12-month-old Lmna(+/-) mice exhibited impaired contractility. In vivo cardiac studies of aged Lmna(+/-) mice revealed DCM; in some mice this occurred without overt conduction system disease. However, neither histopathology nor serum CK levels indicated skeletal muscle pathology. These data demonstrate cardiac pathology due to heterozygous Lmna mutations reflecting a 50% reduction in lamin protein levels. Lamin haploinsufficiency caused early-onset programmed cell death of AV nodal myocytes and progressive electrophysiologic disease. While lamin haploinsufficiency was better tolerated by non-conducting myocytes, ultimately, these too succumbed to diminished lamin levels leading to dilated cardiomyopathy, which presumably arose independently from conduction system disease.


Assuntos
Apoptose , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Sistema de Condução Cardíaco/patologia , Lamina Tipo A/genética , Idade de Início , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/enzimologia , Nó Atrioventricular/patologia , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/enzimologia , Núcleo Celular/patologia , Separação Celular , Eletrofisiologia , Sistema de Condução Cardíaco/enzimologia , Heterozigoto , Marcação In Situ das Extremidades Cortadas , Lamina Tipo A/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Doenças Musculares/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Telemetria , Ultrassonografia
2.
J Interv Card Electrophysiol ; 20(1-2): 1-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17940855

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by mutations in the dystrophin gene. Cardiomyopathy, conduction abnormalities, and ventricular arrhythmias are significant complications of this disease. The mdx ( 5cv ) mouse carries a dystrophin mutation and demonstrates a more severe phenotype than the classic mdx mouse. METHODS: Comprehensive electrophysiological phenotyping was performed in adult mdx ( 5cv ) and wildtype mice, including electrocardiography (ECG), implantable Holter monitoring, intracardiac electrophysiological testing, echocardiography, and exercise treadmill testing. RESULTS: ECG performed in mdx ( 5cv ) mice revealed significantly shorter PR intervals and prominent R waves in surface lead V1. During electrophysiological testing, mdx ( 5cv ) mice exhibited longer ventricle effective refractory periods and mildly increased ventricular tachycardia inducibility. There was no evidence for cardiomyopathy or ventricular dysfunction on echocardiography. Histopathology showed no increased myocardial fibrosis. Exercise endurance was lower in mdx ( 5cv ) mice without arrhythmias or other cardiac abnormalities. CONCLUSION: Taken together at the age range examined, mdx ( 5cv ) mice exhibit discrete cardiac electrophysiological dysfunction but display no evidence of structural or contractile abnormalities. Thus, the mdx ( 5cv ) mouse recapitulates some of the electrophysiological, but not hemodynamic cardiac defects present in human DMD. In certain settings, the mdx ( 5cv ) mouse may be an appropriate subject for studying electrical pathophysiology and therapy of the cardiac complications of DMD.


Assuntos
Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/diagnóstico
3.
Proc Natl Acad Sci U S A ; 102(50): 18123-8, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16332958

RESUMO

Sarcomere protein gene mutations cause hypertrophic cardiomyopathy (HCM), a disease with distinctive histopathology and increased susceptibility to cardiac arrhythmias and risk for sudden death. Myocyte disarray (disorganized cell-cell contact) and cardiac fibrosis, the prototypic but protean features of HCM histopathology, are presumed triggers for ventricular arrhythmias that precipitate sudden death events. To assess relationships between arrhythmias and HCM pathology without confounding human variables, such as genetic heterogeneity of disease-causing mutations, background genotypes, and lifestyles, we studied cardiac electrophysiology, hypertrophy, and histopathology in mice engineered to carry an HCM mutation. Both genetically outbred and inbred HCM mice had variable susceptibility to arrhythmias, differences in ventricular hypertrophy, and variable amounts and distribution of histopathology. Among inbred HCM mice, neither the extent nor location of myocyte disarray or cardiac fibrosis correlated with ex vivo signal conduction properties or in vivo electrophysiologically stimulated arrhythmias. In contrast, the amount of ventricular hypertrophy was significantly associated with increased arrhythmia susceptibility. These data demonstrate that distinct somatic events contribute to variable HCM pathology and that cardiac hypertrophy, more than fibrosis or disarray, correlates with arrhythmic risk. We suggest that a shared pathway triggered by sarcomere gene mutations links cardiac hypertrophy and arrhythmias in HCM.


Assuntos
Arritmias Cardíacas/etiologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Morte Súbita Cardíaca/etiologia , Animais , Cardiomiopatia Hipertrófica/genética , Eletrocardiografia , Eletrofisiologia , Junções Intercelulares/patologia , Camundongos , Camundongos Mutantes , Modelos Biológicos , Mutação/genética , Miocárdio/patologia , Miócitos Cardíacos/citologia , Sarcômeros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA