Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochim Biophys Acta ; 1864(10): 1428-35, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27479486

RESUMO

BACKGROUND: Cancer has long been associated with thrombosis and many of the standard chemotherapeutics used to treat cancer are pro-thrombotic. Thus, the identification of novel selective anticancer drugs that also have antithrombotic properties is of enormous significance. Amblyomin-X is an anticancer protein derived from the salivary glands of the Amblyomma cajennense tick. METHODS: In this work, we determined the inhibition profile of Amblyomin-X and its effect on activated partial thromboplastin time (aPTT) and prothrombin time (PT), using various approaches such as, kinetic analyses, amidolytic assays, SDS-PAGE, and mass spectrometry. RESULTS: Amblyomin-X inhibited factor Xa, prothrombinase and tenase activities. It was hydrolyzed by trypsin and plasmin. MS/MS data of tryptic hydrolysate of Amblyomin-X suggested the presence of Cys(8)-Cys(59) and Cys(19)-Cys(42) but not Cys(34)-Cys(55) disulfide bond. Instead of Cys(34)-Cys(55), two noncanonical Cys(34)-Cys(74) and Cys(55)-Cys(74) disulfide bonds were identified. Furthermore, when Amblyomin-X (1mg/kg) injected in rabbits, it prolonged aPTT and PT. CONCLUSION: Amblyomin-X is a noncompetitive inhibitor (Ki=3.9µM) of factor Xa. It is a substrate for plasmin and trypsin, but not for factor Xa and thrombin. The disulfide Cys(34)-Cys(55) bond probably scrambles with interchain seventh free cysteine residues (Cys(74)) of Amblyomin-X. The prolongation of PT and aPTT is reversible. GENERAL SIGNIFICANCE: In term of anticoagulant property, this is structural and functional characterization of Amblyomin-X. All together, these results and previous findings suggest that Amblyomin-X has a potential to become an anticancer drug with antithrombotic property.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Inibidores do Fator Xa/farmacologia , Fator Xa/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas de Artrópodes , Testes de Coagulação Sanguínea/métodos , Humanos , Masculino , Domínios Proteicos , Tempo de Protrombina/métodos , Coelhos , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Trombose/dietoterapia , Carrapatos/metabolismo
2.
Exp Cell Res ; 340(2): 248-58, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26748183

RESUMO

The Kunitz-type recombinant protein, Amblyomin-X, is an antitumor recombinant molecule from a cDNA library prepared from the salivary glands of the tick Amblyomma cajennense. The primary target of this protein appears to be the proteasome. Amblyomin-X increased gene and protein expression of distinct subunits of the molecular motor dynein, which plays a key role in the intracellular transport. Herein, Amblyomin-X was specifically taken up by tumor cells through lipid-raft endocytic pathways, but not by fibroblasts. Moreover, dynein inhibitor, ciliobrevin A, decreased Amblyomin-X uptake by tumor cells. Furthermore, incubation of tumor cells with Amblyomin-X inhibited trypsin-like activity of the proteasome, which was restored upon pretreatment with ciliobrevin A. Only in tumor cells treated with Amblyomin-X, we identified proteins bounds to dynein that are related to aggresome formation, autophagy inhibition, and early and recycling endosome markers. In addition, Amblyomin-X was found to interact with dynein, increased Rab11A protein expression and Rab11A co-localization with the light-intermediate chain 2 (LIC2) of dynein. Thereby, the results provide new insights on the antitumor mechanism of Amblyomin-X and reveal an unsuspected role of cytoplasmic dynein in its uptake, intracellular trafficking and pro-apoptotic action.


Assuntos
Apoptose/efeitos dos fármacos , Dineínas do Citoplasma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Animais , Apoptose/fisiologia , Proteínas de Artrópodes , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Proteínas Recombinantes/metabolismo , Carrapatos
3.
PLoS One ; 9(12): e111907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479096

RESUMO

Amblyomin-X is a Kunitz-type recombinant protein identified from the transcriptome of the salivary glands of the tick Amblyomma cajennense and has anti-coagulant and antitumoral activity. The supposed primary target of this molecule is the proteasome system. Herein, we elucidated intracellular events that are triggered by Amblyomin-X treatment in an attempt to provide new insight into how this serine protease inhibitor, acting on the proteasome, could be comparable with known proteasome inhibitors. The collective results showed aggresome formation after proteasome inhibition that appeared to occur via the non-exclusive ubiquitin pathway. Additionally, Amblyomin-X increased the expression of various chains of the molecular motor dynein in tumor cells, modulated specific ubiquitin linkage signaling and inhibited autophagy activation by modulating mTOR, LC3 and AMBRA1 with probable dynein involvement. Interestingly, one possible role for dynein in the mechanism of action of Amblyomin-X was in the apoptotic response and its crosstalk with autophagy, which involved the factor Bim; however, we observed no changes in the apoptotic response related to dynein in the experiments performed. The characteristics shared among Amblyomin-X and known proteasome inhibitors included NF-κB blockage and nascent polypeptide-dependent aggresome formation. Therefore, our study describes a Kunitz-type protein that acts on the proteasome to trigger distinct intracellular events compared to classic known proteasome inhibitors that are small-cell-permeable molecules. In investigating the experiments and literature on Amblyomin-X and the known proteasome inhibitors, we also found differences in the structures of the molecules, intracellular events, dynein involvement and tumor cell type effects. These findings also reveal a possible new target for Amblyomin-X, i.e., dynein, and may serve as a tool for investigating tumor cell death associated with proteasome inhibition.


Assuntos
Dineínas/metabolismo , Inibidores de Proteassoma/administração & dosagem , Proteínas e Peptídeos Salivares/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Dineínas/química , Humanos , Ixodidae/química , Ixodidae/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA