Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Free Radic Biol Med ; 204: 276-286, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217089

RESUMO

We developed S1QEL1.719, a novel bioavailable S1QEL (suppressor of site IQ electron leak). S1QEL1.719 prevented superoxide/hydrogen peroxide production at site IQ of mitochondrial complex I in vitro. The free concentration giving half-maximal suppression (IC50) was 52 nM. Even at 50-fold higher concentrations S1QEL1.719 did not inhibit superoxide/hydrogen peroxide production from other sites. The IC50 for inhibition of complex I electron flow was 500-fold higher than the IC50 for suppression of superoxide/hydrogen peroxide production from site IQ. S1QEL1.719 was used to test the metabolic effects of suppressing superoxide/hydrogen peroxide production from site IQin vivo. C57BL/6J male mice fed a high-fat chow for one, two or eight weeks had increased body fat, decreased glucose tolerance, and increased fasting insulin concentrations, classic symptoms of metabolic syndrome. Daily prophylactic or therapeutic oral treatment of high-fat-fed animals with S1QEL1.719 decreased fat accumulation, strongly protected against decreased glucose tolerance and prevented or reversed the increase in fasting insulin level. Free exposures in plasma and liver at Cmax were 1-4 fold the IC50 for suppression of superoxide/hydrogen peroxide production at site IQ and substantially below levels that inhibit electron flow through complex I. These results show that the production of superoxide/hydrogen peroxide from mitochondrial site IQin vivo is necessary for the induction and maintenance of glucose intolerance caused by a high-fat diet in mice. They raise the possibility that oral administration of S1QELs may be beneficial in metabolic syndrome.


Assuntos
Síndrome Metabólica , Superóxidos , Camundongos , Masculino , Animais , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos , Insulina , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Jejum , Tecido Adiposo/metabolismo , Glucose
2.
Biochem J ; 480(5): 363-384, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36862427

RESUMO

Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Ratos , Animais , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/farmacologia
3.
Nat Metab ; 5(1): 21-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624158

RESUMO

Brown adipose tissue is specialized for non-shivering thermogenesis, combining lipolysis with an extremely active mitochondrial electron transport chain and a unique regulated uncoupling protein, UCP1, allowing unrestricted respiration. Current excitement focuses on the presence of brown adipose tissue in humans and the possibility that it may contribute to diet-induced thermogenesis, countering obesity and obesity-related disease as well as protecting cardio-metabolic health. In common with other tissues displaying a high, variable respiration, the tissue possesses a creatine pool and mitochondrial and cytosolic creatine kinase isoforms. Genetic and pharmacological manipulation of these components have pleiotropic effects that appear to influence diet- and cold-induced metabolism in vivo and modeled in vitro. These findings have been used to advance the concept of a UCP1-independent diet-induced thermogenic mechanism based on a dissipative hydrolysis of phosphocreatine in beige and brown adipose tissue. Here we review the in vivo and in vitro experimental basis for this hypothesis, and explore alternative explanations. We conclude that there is currently no convincing evidence for a significant futile creatine cycle in these tissues.


Assuntos
Tecido Adiposo Marrom , Creatina , Humanos , Tecido Adiposo Marrom/metabolismo , Creatina/metabolismo , Obesidade/metabolismo , Dieta , Termogênese
4.
Free Radic Biol Med ; 188: 92-102, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716827

RESUMO

The rates of formation of superoxide and hydrogen peroxide at different electron-donating sites in isolated mitochondria are critically dependent on the substrates that are added, through their effects on the reduction level of each site and the components of the protonmotive force. However, in intact cells the acute effects of added substrates on different sites of cytosolic and mitochondrial hydrogen peroxide production are unclear. Here we tested the effects of substrate addition on cytosolic and mitochondrial hydrogen peroxide release from intact AML12 liver cells. In 30-min starved cells replete with endogenous substrates, addition of glucose, fructose, palmitate, alanine, leucine or glutamine had no effect on the rate or origin of cellular hydrogen peroxide release. However, following 150-min starvation of the cells to deplete endogenous glycogen (and other substrates), cellular hydrogen peroxide production, particularly from NADPH oxidases (NOXs), was decreased, GSH/GSSH ratio increased, and antioxidant gene expression was unchanged. Addition of glucose or glutamine (but not the other substrates) increased hydrogen peroxide release. There were similar relative increases from each of the three major sites of production: mitochondrial sites IQ and IIIQo, and cytosolic NOXs. Glucose supplementation also restored ATP production and mitochondrial NAD reduction level, suggesting that the increased rates of hydrogen peroxide release from the mitochondrial sites were driven by increases in the protonmotive force and the degree of reduction of the electron transport chain. Long-term (24 h) glucose or glutamine deprivation also diminished hydrogen peroxide release rate, ATP production rate and (for glucose deprivation) NAD reduction level. We conclude that the rates of superoxide and hydrogen peroxide production from mitochondrial sites in liver cells are insensitive to extra added substrates when endogenous substrates are not depleted, but these rates are decreased when endogenous substrates are lowered by 150 min of starvation, and can be enhanced by restoring glucose or glutamine supply through improvements in mitochondrial energetic state.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , NADPH Oxidases/metabolismo , Açúcares/metabolismo , Açúcares/farmacologia , Superóxidos/metabolismo
5.
Biochem Soc Trans ; 49(6): 2929-2939, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34882231

RESUMO

Oxidation of succinate by mitochondria can generate a higher protonmotive force (pmf) than can oxidation of NADH-linked substrates. Fundamentally, this is because of differences in redox potentials and gearing. Biology adds kinetic constraints that tune the oxidation of NADH and succinate to ensure that the resulting mitochondrial pmf is suitable for meeting cellular needs without triggering pathology. Tuning within an optimal range is used, for example, to shift ATP consumption between different consumers. Conditions that overcome these constraints and allow succinate oxidation to drive pmf too high can cause pathological generation of reactive oxygen species. We discuss the thermodynamic properties that allow succinate oxidation to drive pmf higher than NADH oxidation, and discuss the evidence for kinetic tuning of ATP production and for pathologies resulting from substantial succinate oxidation in vivo.


Assuntos
Mitocôndrias/metabolismo , Ácido Succínico/metabolismo , Animais , Metabolismo Energético , Termodinâmica
6.
Aging Cell ; 20(10): e13476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34521156

RESUMO

The underlying causes of aging remain elusive, but may include decreased intestinal homeostasis followed by disruption of the intestinal barrier, which can be mimicked by nutrient-rich diets. S3QELs are small-molecule suppressors of site IIIQo electron leak; they suppress superoxide generation at complex III of the mitochondrial electron transport chain without inhibiting oxidative phosphorylation. Here we show that feeding different S3QELs to Drosophila on a high-nutrient diet protects against greater intestinal permeability, greater enterocyte apoptotic cell number, and shorter median lifespan. Hif-1α knockdown in enterocytes also protects, and blunts any further protection by S3QELs. Feeding S3QELs to mice on a high-fat diet also protects against the diet-induced increase in intestinal permeability. Our results demonstrate by inference of S3QEL use that superoxide produced by complex III in enterocytes contributes to diet-induced intestinal barrier disruption in both flies and mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mucosa Intestinal/patologia , Animais , Drosophila
7.
Free Radic Biol Med ; 164: 223-232, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33421588

RESUMO

Superoxide produced by mitochondria has been implicated in numerous physiologies and pathologies. Eleven different mitochondrial sites that can produce superoxide and/or hydrogen peroxide (O2.-/H2O2) have been identified in vitro, but little is known about their contributions in vivo. We introduce novel variants of S1QELs and S3QELs (small molecules that suppress O2.-/H2O2 production specifically from mitochondrial sites IQ and IIIQo, respectively, without compromising bioenergetics), that are suitable for use in vivo. When administered by intraperitoneal injection, they achieve total tissue concentrations exceeding those that are effective in vitro. We use them to study the engagement of sites IQ and IIIQo in mice lacking functional manganese-superoxide dismutase (SOD2). Lack of SOD2 is expected to elevate superoxide levels in the mitochondrial matrix, and leads to severe pathologies and death about 8 days after birth. Compared to littermate wild-type mice, 6-day-old Sod2-/- mice had significantly lower body weight, lower heart succinate dehydrogenase activity, and greater hepatic lipid accumulation. These pathologies were ameliorated by treatment with a SOD/catalase mimetic, EUK189, confirming previous observations. A 3-day treatment with S1QEL352 decreased the inactivation of cardiac succinate dehydrogenase and hepatic steatosis in Sod2-/- mice. S1QEL712, which has a distinct chemical structure, also decreased hepatic steatosis, confirming that O2.- derived specifically from mitochondrial site IQ is a significant driver of hepatic steatosis in Sod2-/- mice. These findings also demonstrate the ability of these new S1QELs to suppress O2.- production in the mitochondrial matrix in vivo. In contrast, suppressing site IIIQo using S3QEL941 did not protect, suggesting that site IIIQo does not contribute significantly to mitochondrial O2.- production in the hearts or livers of Sod2-/- mice. We conclude that the novel S1QELs are effective in vivo, and that site IQ runs in vivo and is a significant driver of pathology in Sod2-/- mice.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Succinato Desidrogenase , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
8.
FEBS Lett ; 595(3): 415-432, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33112430

RESUMO

Barth syndrome (BTHS) is a rare X-linked genetic disorder caused by mutations in the gene encoding the transacylase tafazzin and characterized by loss of cardiolipin and severe cardiomyopathy. Mitochondrial oxidants have been implicated in the cardiomyopathy in BTHS. Eleven mitochondrial sites produce superoxide/hydrogen peroxide (H2 O2 ) at significant rates. Which of these sites generate oxidants at excessive rates in BTHS is unknown. Here, we measured the maximum capacity of superoxide/H2 O2 production from each site and the ex vivo rate of superoxide/H2 O2 production in the heart and skeletal muscle mitochondria of the tafazzin knockdown mice (tazkd) from 3 to 12 months of age. Despite reduced oxidative capacity, superoxide/H2 O2 production was indistinguishable between tazkd mice and wild-type littermates. These observations raise questions about the involvement of mitochondrial oxidants in BTHS pathology.


Assuntos
Aciltransferases/genética , Síndrome de Barth/genética , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Aciltransferases/deficiência , Animais , Síndrome de Barth/enzimologia , Síndrome de Barth/patologia , Cardiolipinas/metabolismo , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , NAD/metabolismo , Consumo de Oxigênio/genética , Superóxidos/metabolismo
9.
Crit Rev Biochem Mol Biol ; 55(6): 592-661, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33148057

RESUMO

Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Animais , Antioxidantes/metabolismo , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo
10.
Redox Biol ; 37: 101722, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32971363

RESUMO

Understanding how mitochondria contribute to cellular oxidative stress and drive signaling and disease is critical, but quantitative assessment is difficult. Our previous studies of cultured C2C12 cells used inhibitors of specific sites of superoxide and hydrogen peroxide production to show that mitochondria generate about half of the hydrogen peroxide released by the cells, and site IQ of respiratory complex I produces up to two thirds of the superoxide and hydrogen peroxide generated in the mitochondrial matrix. Here, we used the same approach to measure the engagement of these sites in seven diverse cell lines to determine whether this pattern is specific to C2C12 cells, or more general. These diverse cell lines covered primary, immortalized, and cancerous cells, from seven tissues (liver, cervix, lung, skin, neuron, heart, bone) of three species (human, rat, mouse). The rate of appearance of hydrogen peroxide in the extracellular medium spanned a 30-fold range from HeLa cancer cells (3 pmol/min/mg protein) to AML12 liver cells (84 pmol/min/mg protein). The mean contribution of identified mitochondrial sites to this extracellular hydrogen peroxide signal was 30 ± 7% SD; the mean contribution of NADPH oxidases was 60 ± 14%. The relative contributions of different sites in the mitochondrial electron transport chain were broadly similar in all seven cell types (and similar to published results for C2C12 cells). 70 ± 4% of identified superoxide/hydrogen peroxide generation in the mitochondrial matrix was from site IQ; 30 ± 4% was from site IIIQo. We conclude that although absolute rates vary considerably, the relative contributions of different sources of hydrogen peroxide production are similar in nine diverse cell types under unstressed conditions in vitro. Identified mitochondrial sites account for one third of total cellular hydrogen peroxide production (half each from sites IQ and IIIQo); in the mitochondrial matrix the majority (two thirds) of superoxide/hydrogen peroxide is from site IQ.


Assuntos
Complexo I de Transporte de Elétrons , Superóxidos , Animais , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Ratos , Superóxidos/metabolismo
11.
Redox Biol ; 28: 101341, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31627168

RESUMO

Reactive oxygen species are important signaling molecules crucial for muscle differentiation and adaptation to exercise. However, their uncontrolled generation is associated with an array of pathological conditions. To identify and quantify the sources of superoxide and hydrogen peroxide in skeletal muscle we used site-specific suppressors (S1QELs, S3QELs and NADPH oxidase inhibitors). We measured the rates of hydrogen peroxide release from isolated rat muscle mitochondria incubated in media mimicking the cytosol of intact muscle. By measuring the extent of inhibition caused by the addition of different site-specific suppressors of mitochondrial superoxide/hydrogen peroxide production (S1QELs for site IQ and S3QELs for site IIIQo), we determined the contributions of these sites to the total signal. In media mimicking resting muscle, their contributions were each 12-18%, consistent with a previous method. In C2C12 myoblasts, site IQ contributed 12% of cellular hydrogen peroxide production and site IIIQo contributed about 30%. When C2C12 myoblasts were differentiated to myotubes, hydrogen peroxide release increased five-fold, and the proportional contribution of site IQ doubled. The use of S1QELs and S3QELs is a powerful new way to measure the relative contributions of different mitochondrial sites to muscle hydrogen peroxide production under different conditions. Our results show that mitochondrial sites IQ and IIIQo make a substantial contribution to superoxide/hydrogen peroxide production in muscle mitochondria and C2C12 myoblasts. The total hydrogen peroxide release rate and the relative contribution of site IQ both increase substantially upon differentiation to myotubes.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Superóxidos/metabolismo , Animais , Feminino , Modelos Biológicos , Especificidade de Órgãos , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Free Radic Biol Med ; 143: 545-559, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518685

RESUMO

Mitochondria are important sources of superoxide and hydrogen peroxide in cell signaling and disease. In particular, superoxide/hydrogen peroxide production during reverse electron transport from ubiquinol to NAD+ though Complex I is implicated in several physiological and pathological processes. S1QELs are small molecules that suppress superoxide/hydrogen peroxide production at Complex I without affecting forward electron transport. Their mechanism of action is disputed. To test different mechanistic models, we compared the effects of two inhibitors of Complex I electron transport (piericidin A and rotenone) and two S1QELs from different chemical families on superoxide/hydrogen peroxide production and electron transport by Complex I in isolated mitochondria. Piericidin A and rotenone (and S1QEL1.1 at higher concentrations) prevented superoxide/hydrogen peroxide production from sites IQ and IF in Complex I by inhibiting reverse electron transport into the complex. S1QELs decreased the potency of electron transport inhibition by piericidin A and rotenone, suggesting that S1QELs bind directly to Complex I. S1QEL2.1 (and S1QEL1.1 at lower concentrations) suppressed site IQ without affecting reverse electron transport or site IF, showing that sites IQ and IF are distinct, and that S1QELs do not work simply by decreasing reverse electron transport to site IF (or site IQ). S1QELs did not affect the reduction of NAD+ or the rate of site IF driven by reverse electron transport, therefore they do not alter the driving forces for reverse electron transport and that is not how they suppress site IQ. We conclude that S1QELs bind to Complex I to influence the conformation of the piericidin A and rotenone binding sites and directly suppress superoxide/hydrogen peroxide production at site IQ, which is a separate site from site IF.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Elétrons , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Superóxidos/metabolismo , Animais , Transporte de Elétrons , Feminino , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Biochem Soc Trans ; 47(5): 1461-1469, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31506330

RESUMO

Changes in mitochondrial superoxide and hydrogen peroxide production may contribute to various pathologies, and even aging, given that over time and in certain conditions, they damage macromolecules and disrupt normal redox signalling. Mitochondria-targeted antioxidants such as mitoQ, mitoVitE, and mitoTEMPO have opened up the study of the importance of altered mitochondrial matrix superoxide/hydrogen peroxide in disease. However, the use of such tools has caveats and they are unable to distinguish precise sites of production within the reactions of substrate oxidation and the electron transport chain. S1QELs are specific small-molecule Suppressors of site IQElectron Leak and S3QELs are specific small-molecule Suppressors of site IIIQoElectron Leak; they prevent superoxide/hydrogen production at specific sites without affecting electron transport or oxidative phosphorylation. We discuss the benefits of using S1QELs and S3QELs as opposed to mitochondria-targeted antioxidants, mitochondrial poisons, and genetic manipulation. We summarise pathologies in which site IQ in mitochondrial complex I and site IIIQo in mitochondrial complex III have been implicated using S1QELs and S3QELs.


Assuntos
Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Animais , Transporte de Elétrons , Humanos , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
14.
Trends Endocrinol Metab ; 30(7): 412-416, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31147164

RESUMO

Quantifying total cellular ATP production rate has become easier with recent technology and is essential to understanding energy metabolism in cells and tissues. We review fundamental concepts for determining total cellular ATP production rate from measurements of oxygen consumption and acidification rates and discuss their application to answering biological questions.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Metabolismo Energético/genética , Humanos , Consumo de Oxigênio/genética
15.
Free Radic Biol Med ; 130: 140-150, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389498

RESUMO

The relative contributions of different mitochondrial and cytosolic sources of superoxide and hydrogen peroxide in cells are not well established because of a lack of suitable quantitative assays. To address this problem using resting C2C12 myoblasts we measured the effects of specific inhibitors that do not affect other pathways on the rate of appearance of hydrogen peroxide in the extracellular medium. We used inhibitors of NADPH oxidases (NOXs), suppressors of site IQ electron leak (S1QELs) at mitochondrial Complex I, and suppressors of site IIIQo electron leak (S3QELs) at mitochondrial Complex III. Around 40% of net cellular hydrogen peroxide release was from NOXs and approximately 45% was from the two mitochondrial sites; 30% from site IIIQo and 15% from site IQ. As expected, decreasing cytosolic antioxidant capacity by lowering glutathione levels increased the absolute rates from all sites without changing their proportions, whereas decreasing antioxidant defenses in the mitochondrial matrix increased only the absolute and relative contributions of the two mitochondrial sites. These results show directly that mitochondria are a major contributor to cytosolic hydrogen peroxide in resting C2C12 myoblasts, and provide the first direct evidence of superoxide/hydrogen peroxide production from site IQ in unstressed cells.


Assuntos
Citosol/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Mioblastos Esqueléticos/fisiologia , NADPH Oxidases/metabolismo , Animais , Domínio Catalítico , Células Cultivadas , Senescência Celular , Feminino , Camundongos , Camundongos Endogâmicos C3H , NADPH Oxidases/antagonistas & inibidores , Pirazóis/farmacologia , Piridonas/farmacologia , Ratos , Ratos Wistar
17.
Methods Mol Biol ; 1782: 157-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850999

RESUMO

Oxidative phosphorylation is an important energy-conserving mechanism coupling mitochondrial electron transfer to ATP synthesis. Coupling between respiration and phosphorylation is not fully efficient due to proton leaks. In this chapter, we present a method to measure proton leak activity in isolated mitochondria. The relative strength of a modular kinetic approach to probe oxidative phosphorylation is emphasized.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Prótons , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Eletrodos , Cinética , Potencial da Membrana Mitocondrial , Músculo Esquelético/citologia , Oniocompostos/metabolismo , Consumo de Oxigênio , Ratos , Compostos de Tritil/metabolismo
19.
Methods Mol Biol ; 1782: 301-313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29851007

RESUMO

Measuring respiration rate can be a powerful way to assess energetic function in isolated mitochondria. Current, plate-based methods have several advantages over older, suspension-based systems, including greater throughput and the requirement of only µg quantities of material. In this chapter, we describe a plate-based method for measuring oxygen consumption by isolated adherent mitochondria.


Assuntos
Respiração Celular , Fluorometria/métodos , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio , Animais , Fluorometria/instrumentação , Ratos , Ratos Wistar
20.
J Bone Miner Res ; 33(6): 1052-1065, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29342317

RESUMO

Mesenchymal stromal cells (MSCs) are early progenitors that can differentiate into osteoblasts, chondrocytes, and adipocytes. We hypothesized that osteoblasts and adipocytes utilize distinct bioenergetic pathways during MSC differentiation. To test this hypothesis, we compared the bioenergetic profiles of preosteoblast MC3T3-E1 cells and calvarial osteoblasts with preadipocyte 3T3L1 cells, before and after differentiation. Differentiated MC3T3-E1 osteoblasts met adenosine triphosphate (ATP) demand mainly by glycolysis with minimal reserve glycolytic capacity, whereas nondifferentiated cells generated ATP through oxidative phosphorylation. A marked Crabtree effect (acute suppression of respiration by addition of glucose, observed in both MC3T3-E1 and calvarial osteoblasts) and smaller mitochondrial membrane potential in the differentiated osteoblasts, particularly those incubated at high glucose concentrations, indicated a suppression of oxidative phosphorylation compared with nondifferentiated osteoblasts. In contrast, both nondifferentiated and differentiated 3T3-L1 adipocytes met ATP demand primarily by oxidative phosphorylation despite a large unused reserve glycolytic capacity. In sum, we show that nondifferentiated precursor cells prefer to use oxidative phosphorylation to generate ATP; when they differentiate to osteoblasts, they gain a strong preference for glycolytic ATP generation, but when they differentiate to adipocytes, they retain the strong preference for oxidative phosphorylation. Unique metabolic programming in mesenchymal progenitor cells may influence cell fate and ultimately determine the degree of bone formation and/or the development of marrow adiposity. © 2018 American Society for Bone and Mineral Research.


Assuntos
Trifosfato de Adenosina/biossíntese , Adipócitos/metabolismo , Glicólise , Osteoblastos/metabolismo , Fosforilação Oxidativa , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular , Respiração Celular , Metabolismo Energético , Regulação da Expressão Gênica , Glucose/metabolismo , Lactatos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Osteoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA