Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
RNA Biol ; 21(1): 31-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38952121

RESUMO

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of ß-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Peptidil Transferases , Biossíntese de Proteínas , RNA Ribossômico , Ribossomos , Peptidil Transferases/metabolismo , Peptidil Transferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ribossomos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/genética , Cinética
2.
Proc Natl Acad Sci U S A ; 120(2): e2216216120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595701

RESUMO

The rise of antibiotic-resistant bacterial infections poses a global threat. Antibiotic resistance development is generally studied in batch cultures which conceals the heterogeneity in cellular responses. Using single-cell imaging, we studied the growth response of Escherichia coli to sub-inhibitory and inhibitory concentrations of nine antibiotics. We found that the heterogeneity in growth increases more than what is expected from growth rate reduction for three out of the nine antibiotics tested. For two antibiotics (rifampicin and nitrofurantoin), we found that sub-populations were able to maintain growth at lethal antibiotic concentrations for up to 10 generations. This perseverance of growth increased the population size and led to an up to 40-fold increase in the frequency of antibiotic resistance mutations in gram-negative and gram-positive species. We conclude that antibiotic perseverance is a common phenomenon that has the potential to impact antibiotic resistance development across pathogenic bacteria.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Mutação , Bactérias , Farmacorresistência Bacteriana/genética
3.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36073531

RESUMO

Conjugation driven by a chromosomally integrated F-plasmid (high frequency of recombination strain) can create bacteria with hybrid chromosomes. Previous studies of interspecies hybrids have focused on hybrids in which a region of donor chromosome replaces an orthologous region of recipient chromosome leaving chromosome size unchanged. Very little is known about hybrids with enlarged chromosomes, the mechanisms of their creation, or their subsequent trajectories of adaptative evolution. We addressed this by selecting 11 interspecies hybrids between Escherichia coli and Salmonella Typhimurium in which genome size was enlarged. In three cases, this occurred by the creation of an F'-plasmid while in the remaining eight, it was due to recombination of donor DNA into the recipient chromosome. Chromosome length increased by up to 33% and was associated in most cases with reduced growth fitness. Two hybrids, in which chromosome length was increased by the addition of 0.97 and 1.3 Mb, respectively, were evolved to study genetic pathways of fitness cost amelioration. In each case, relative fitness rapidly approached one and this was associated with large deletions involving recombination between repetitive DNA sequences. The locations of these repetitive sequences played a major role in determining the architecture of the evolved genotypes. Notably, in ten out of ten independent evolution experiments, deletions removed DNA of both species, creating high-fitness strains with hybrid chromosomes. In conclusion, we found that enlargement of a bacterial chromosome by acquisition of diverged orthologous DNA is followed by a period of rapid evolutionary adjustment frequently creating irreversibly hybrid chromosomes.


Assuntos
Cromossomos Bacterianos , Cromossomos , Cromossomos Bacterianos/genética , DNA Bacteriano , Escherichia coli/genética , Escherichia coli/metabolismo , Genótipo , Salmonella typhimurium/genética
4.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35348727

RESUMO

Analysis of bacterial genomes shows that, whereas diverse species share many genes in common, their linear order on the chromosome is often not conserved. Whereas rearrangements in gene order could occur by genetic drift, an alternative hypothesis is rearrangement driven by positive selection during niche adaptation (SNAP). Here, we provide the first experimental support for the SNAP hypothesis. We evolved Salmonella to adapt to growth on malate as the sole carbon source and followed the evolutionary trajectories. The initial adaptation to growth in the new environment involved the duplication of 1.66 Mb, corresponding to one-third of the Salmonella chromosome. This duplication is selected to increase the copy number of a single gene, dctA, involved in the uptake of malate. Continuing selection led to the rapid loss or mutation of duplicate genes from either copy of the duplicated region. After 2000 generations, only 31% of the originally duplicated genes remained intact and the gene order within the Salmonella chromosome has been significantly and irreversibly altered. These results experientially validate predictions made by the SNAP hypothesis and show that SNAP can be a strong driving force for rearrangements in chromosomal gene order.


Assuntos
Cromossomos , Genoma Bacteriano , Adaptação Fisiológica/genética , Bactérias/genética , Evolução Molecular , Duplicação Gênica , Ordem dos Genes , Rearranjo Gênico
5.
mBio ; 12(3): e0115121, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061591

RESUMO

Homologous recombination is an important mechanism directly involved in the repair, organization, and evolution of prokaryotic and eukaryotic chromosomes. We developed a system, based on two genetic cassettes, that allows the measurement of recombinational repair rates between different locations on the chromosome. Using this system, we analyzed 81 different positional combinations throughout the chromosome to answer the question of how the position and orientation of sequences affect intrachromosomal homologous recombination. Our results show that recombination was possible between any two locations tested in this study and that recombinational repair rates varied by just above an order of magnitude. The observed differences in rate do not correlate with distance between the recombination cassettes or with distance from the origin of replication but could be explained if each location contributes individually to the recombination event. The relative levels of accessibility for recombination vary 5-fold between the various cassette locations, and we found that the nucleoid structure of the chromosome may be the major factor influencing the recombinational accessibility of each chromosomal site. Furthermore, we found that the orientation of the recombination cassettes had a significant impact on recombination. Recombinational repair rates for the cassettes inserted as direct repeats are, on average, 2.2-fold higher than those for the same sets inserted as inverted repeats. These results suggest that the bacterial chromosome is not homogenous with regard to homologous recombination, with regions that are more or less accessible, and that the orientation of genes affects recombination rates. IMPORTANCE Bacterial chromosomes frequently carry multiple copies of genes at separate chromosomal locations. In Salmonella, these include the 7 rrn operons and the duplicate tuf genes. Genes within these families coevolve by homologous recombination, but it is not obvious whether their rates of recombination reflect general rates of intrachromosomal recombination or are an evolved property particularly associated with these conserved genes and locations. Using a novel experimental system, we show that recombination is possible between all tested pairs of locations at rates that vary by just above 1 order of magnitude. Differences in rate do not correlate with distance between the sites or distance to the origin of replication but may be explained if each location contributes individually to the recombination event. Our results suggest the existence of bacterial chromosomal domains that are differentially available for recombination and that gene orientation affects recombination rates.


Assuntos
Cromossomos Bacterianos/genética , Recombinação Homóloga , Salmonella/genética , Reparo do DNA
6.
Genome Biol Evol ; 13(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677562

RESUMO

The evolution of gene order rearrangements within bacterial chromosomes is a fast process. Closely related species can have almost no conservation in long-range gene order. A prominent exception to this rule is a >40 kb long cluster of five core operons (secE-rpoBC-str-S10-spc-alpha) and three variable adjacent operons (cysS, tufB, and ecf) that together contain 57 genes of the transcriptional and translational machinery. Previous studies have indicated that at least part of this operon cluster might have been present in the last common ancestor of bacteria and archaea. Using 204 whole genome sequences, ∼2 Gy of evolution of the operon cluster were reconstructed back to the last common ancestors of the Gammaproteobacteria and of the Bacilli. A total of 163 independent evolutionary events were identified in which the operon cluster was altered. Further examination showed that the process of disconnecting two operons generally follows the same pattern. Initially, a small number of genes is inserted between the operons breaking the concatenation followed by a second event that fully disconnects the operons. While there is a general trend for loss of gene synteny over time, there are examples of increased alteration rates at specific branch points or within specific bacterial orders. This indicates the recurrence of relaxed selection on the gene order within bacterial chromosomes. The analysis of the alternation events indicates that segmental genome duplications and/or transposon-directed recombination play a crucial role in rearrangements of the operon cluster.


Assuntos
Evolução Molecular , Firmicutes/genética , Gammaproteobacteria/genética , Óperon , Firmicutes/classificação , Gammaproteobacteria/classificação , Ordem dos Genes , Transferência Genética Horizontal , Filogenia
7.
J Antimicrob Chemother ; 76(6): 1433-1440, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33608713

RESUMO

BACKGROUND: The qepA1 gene encodes an efflux pump that reduces susceptibility to ciprofloxacin. Little is known about the regulation of qepA1 expression. OBJECTIVES: To assess the potential role of ciprofloxacin and other antibiotics in the regulation of qepA1 gene expression. To identify the promoter that drives qepA1 expression and other factors involved in expression regulation. To assess whether the identified features are universal among qepA alleles. METHODS: A translational qepA1-yfp fusion under the control of the qepA1 upstream region was cloned into the Escherichia coli chromosome. Expression of the fusion protein was measured in the presence of various antibiotics. Deletions within the upstream region were introduced to identify regions involved in gene expression and regulation. The qepA1 coding sequence and upstream region were compared with all available qepA sequences. RESULTS: Cellular stress caused by the presence of various antibiotics can induce qepA1 expression. The qepA1 gene is fused to a class I integron and gene expression is driven by the Pc promoter within the integrase gene. A segment within the integron belonging to a truncated dfrB4 gene is essential for the regulation of qepA1 expression. This genetic context is universal among all sequenced qepA alleles. CONCLUSIONS: The fusion of the qepA1 gene to a class I integron has created a novel regulatory unit that enables qepA1 expression to be under the control of antibiotic exposure. This setup mitigates potential negative effects of QepA1 production on bacterial fitness by restricting high-level expression to environmental conditions in which QepA1 is beneficial.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Integrons
8.
Mol Biol Evol ; 38(4): 1472-1481, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33247724

RESUMO

Integration of a conjugative plasmid into a bacterial chromosome can promote the transfer of chromosomal DNA to other bacteria. Intraspecies chromosomal conjugation is believed responsible for creating the global pathogens Klebsiella pneumoniae ST258 and Escherichia coli ST1193. Interspecies conjugation is also possible but little is known about the genetic architecture or fitness of such hybrids. To study this, we generated by conjugation 14 hybrids of E. coli and Salmonella enterica. These species belong to different genera, diverged from a common ancestor >100 Ma, and share a conserved order of orthologous genes with ∼15% nucleotide divergence. Genomic analysis revealed that all but one hybrid had acquired a contiguous segment of donor E. coli DNA, replacing a homologous region of recipient Salmonella chromosome, and ranging in size from ∼100 to >4,000 kb. Recombination joints occurred in sequences with higher-than-average nucleotide identity. Most hybrid strains suffered a large reduction in growth rate, but the magnitude of this cost did not correlate with the length of foreign DNA. Compensatory evolution to ameliorate the cost of low-fitness hybrids pointed towards disruption of complex genetic networks as a cause. Most interestingly, 4 of the 14 hybrids, in which from 45% to 90% of the Salmonella chromosome was replaced with E. coli DNA, showed no significant reduction in growth fitness. These data suggest that the barriers to creating high-fitness interspecies hybrids may be significantly lower than generally appreciated with implications for the creation of novel species.


Assuntos
Escherichia coli/genética , Aptidão Genética , Hibridização Genética , Salmonella typhimurium/genética , Evolução Biológica , Cromossomos Bacterianos , Recombinação Genética
9.
J Antimicrob Chemother ; 76(1): 77-83, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089314

RESUMO

BACKGROUND: Mutations that inactivate MarR reduce susceptibility to ciprofloxacin and competitive growth fitness in Escherichia coli. Both phenotypes are caused by overexpression of the MarA regulon, which includes the AcrAB-TolC drug efflux pump. OBJECTIVES: We asked whether compensatory evolution could reduce the fitness cost of MarR-inactivating mutations without affecting resistance to ciprofloxacin. METHODS: The cost of overexpressing the AcrAB-TolC efflux pump was measured independently of MarA overexpression. Experimental evolution of MarR-inactive strains was used to select mutants with increased fitness. The acquired mutations were identified and their effects on drug susceptibility were measured. RESULTS: Overexpression of the AcrAB-TolC efflux pump was found not to contribute to the fitness cost of MarA regulon overexpression. Fitness-compensatory mutations were selected in marA and lon. The mutations reduced the level of MarA protein thus reducing expression of the MarA regulon. They restored growth fitness but also reduced resistance to ciprofloxacin. CONCLUSIONS: The fitness cost caused by overexpression of the MarA regulon has multiple contributing factors. Experimental evolution did not identify any single pump-independent cost factor. Instead, efficient fitness compensation occurred only by mechanisms that reduce MarA concentration, which simultaneously reduce the drug resistance phenotype. This resistance/fitness trade-off is a barrier to the successful spread of MarR inactivation mutations in clinical isolates where growth fitness is essential.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas Repressoras
10.
J Antimicrob Chemother ; 76(3): 606-615, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33221850

RESUMO

BACKGROUND: Mutations in RNA polymerase (RNAP) can reduce susceptibility to ciprofloxacin in Escherichia coli, but the mechanism of transcriptional reprogramming responsible is unknown. Strains carrying ciprofloxacin-resistant (CipR) rpoB mutations have reduced growth fitness and their impact on clinical resistance development is unclear. OBJECTIVES: To assess the potential for CipRrpoB mutations to contribute to resistance development by estimating the number of distinct alleles. To identify fitness-compensatory mutations that ameliorate the fitness costs of CipRrpoB mutations. To understand how CipRrpoB mutations reprogramme RNAP. METHODS: E. coli strains carrying five different CipRrpoB alleles were evolved with selection for improved fitness and characterized for acquired mutations, relative fitness and MICCip. The effects of dksA mutations and a ppGpp0 background on growth and susceptibility phenotypes associated with CipRrpoB alleles were determined. RESULTS: The number of distinct CipRrpoB mutations was estimated to be >100. Mutations in RNAP genes and in dksA can compensate for the fitness cost of CipRrpoB mutations. Deletion of dksA reduced the MICCip for strains carrying CipRrpoB alleles. A ppGpp0 phenotype had no effect on drug susceptibility. CONCLUSIONS: CipRrpoB mutations induce an ppGpp-independent stringent-like response. Approximately half of the reduction in ciprofloxacin susceptibility is caused by an increased affinity of RNAP to DksA while the other half is independent of DksA. Stringent-like response activating mutations might be the most diverse class of mutations reducing susceptibility to antibiotics.


Assuntos
Proteínas de Escherichia coli , Guanosina Tetrafosfato , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
11.
PLoS Genet ; 16(3): e1008615, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130223

RESUMO

The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes.


Assuntos
Aclimatação/genética , Cromossomos Bacterianos/genética , Duplicação Gênica/genética , Rearranjo Gênico/genética , Seleção Genética/genética , Aberrações Cromossômicas , Evolução Molecular , Frequência do Gene/genética , Ordem dos Genes/genética , Genoma Bacteriano/genética , Modelos Teóricos , Filogenia
12.
Mol Biol Evol ; 37(6): 1637-1646, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031639

RESUMO

Experimental evolution is a powerful tool to study genetic trajectories to antibiotic resistance under selection. A confounding factor is that outcomes may be heavily influenced by the choice of experimental parameters. For practical purposes (minimizing culture volumes), most experimental evolution studies with bacteria use transmission bottleneck sizes of 5 × 106 cfu. We currently have a poor understanding of how the choice of transmission bottleneck size affects the accumulation of deleterious versus high-fitness mutations when resistance requires multiple mutations, and how this relates outcome to clinical resistance. We addressed this using experimental evolution of resistance to ciprofloxacin in Escherichia coli. Populations were passaged with three different transmission bottlenecks, including single cell (to maximize genetic drift) and bottlenecks spanning the reciprocal of the frequency of drug target mutations (108 and 1010). The 1010 bottlenecks selected overwhelmingly mutations in drug target genes, and the resulting genotypes corresponded closely to those found in resistant clinical isolates. In contrast, both the 108 and single-cell bottlenecks selected mutations in three different gene classes: 1) drug targets, 2) efflux pump repressors, and 3) transcription-translation genes, including many mutations with low fitness. Accordingly, bottlenecks smaller than the average nucleotide substitution rate significantly altered the experimental outcome away from genotypes observed in resistant clinical isolates. These data could be applied in designing experimental evolution studies to increase their predictive power and to explore the interplay between different environmental conditions, where transmission bottlenecks might vary, and resulting evolutionary trajectories.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Evolução Molecular , Fluoroquinolonas , Ligação Genética , Fenótipo , Sequenciamento Completo do Genoma
13.
Proc Natl Acad Sci U S A ; 117(6): 3185-3191, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31992637

RESUMO

A fundamental feature of life is that ribosomes read the genetic code in messenger RNA (mRNA) as triplets of nucleotides in a single reading frame. Mutations that shift the reading frame generally cause gene inactivation and in essential genes cause loss of viability. Here we report and characterize a +1-nt frameshift mutation, centrally located in rpoB, an essential gene encoding the beta-subunit of RNA polymerase. Mutant Escherichia coli carrying this mutation are viable and highly resistant to rifampicin. Genetic and proteomic experiments reveal a very high rate (5%) of spontaneous frameshift suppression occurring on a heptanucleotide sequence downstream of the mutation. Production of active protein is stimulated to 61-71% of wild-type level by a feedback mechanism increasing translation initiation. The phenomenon described here could have broad significance for predictions of phenotype from genotype. Several frameshift mutations have been reported in rpoB in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis (Mtb). These mutations have never been experimentally validated, and no mechanisms of action have been proposed. This work shows that frameshift mutations in rpoB can be a mutational mechanism generating antibiotic resistance. Our analysis further suggests that genetic elements supporting productive frameshifting could rapidly evolve de novo, even in essential genes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Mutação da Fase de Leitura/genética , Genes Essenciais/genética , Escherichia coli/efeitos dos fármacos , Evolução Molecular , Rifampina/farmacologia
14.
Mol Biol Evol ; 36(9): 1990-2000, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132113

RESUMO

The last common ancestor of the Gammaproteobacteria carried an important 40-kb chromosome section encoding 51 proteins of the transcriptional and translational machinery. These genes were organized into eight contiguous operons (rrnB-tufB-secE-rpoBC-str-S10-spc-alpha). Over 2 Gy of evolution, in different lineages, some of the operons became separated by multigene insertions. Surprisingly, in many Enterobacteriaceae, much of the ancient organization is conserved, indicating a strong selective force on the operons to remain colinear. Here, we show for one operon pair, tufB-secE in Salmonella, that an interruption of contiguity significantly reduces growth rate. Our data show that the tufB-secE operons are concatenated by an interoperon terminator-promoter overlap that plays a significant role regulating gene expression. Interrupting operon contiguity interferes with this regulation, reducing cellular fitness. Six operons of the ancestral chromosome section remain contiguous in Salmonella (tufB-secE-rpoBC and S10-spc-alpha) and, strikingly, each of these operon pairs is also connected by an interoperon terminator-promoter overlap. Accordingly, we propose that operon concatenation is an ancient feature that restricts the potential to rearrange bacterial chromosomes and can select for the maintenance of a colinear operon organization over billions of years.


Assuntos
Cromossomos Bacterianos , Óperon , Sequência de Bases , Códon de Terminação , DNA Concatenado , Regiões Promotoras Genéticas , Salmonella
15.
Bio Protoc ; 9(3): e3159, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654967

RESUMO

Homologous recombination between two similar DNA molecules, plays an important role in the repair of double-stranded DNA breaks. Recombination can occur between two sister chromosomes, or between two locations of similar sequence identity within the same chromosome. The assay described here is designed to measure the rate of homologous recombination between two locations with sequence similarity within the same bacterial chromosome. For this purpose, a selectable/counter-selectable genetic cassette is inserted into one of the locations and homologous recombination repair rates are measured as a function of recombinational removal of the inserted cassette. This recombinational repair process is called gene conversion, non-reciprocal recombination. We used this method to measure the recombination rates between genes within gene families and to study the stability of mobile genetic elements inserted into members of gene families.

16.
Sci Rep ; 8(1): 17488, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504835

RESUMO

Rifampicin resistance (RifR) is caused by mutations in rpoB, encoding the ß-subunit of RNA polymerase. RifR mutations generally incur a fitness cost and in resistant isolates are frequently accompanied by compensatory mutations in rpoA, rpoB or rpoC. Previous studies of fitness compensation focused on RifR caused by amino acid substitutions within rpoB. RifR is also caused by deletion and duplication mutations in rpoB but it is not known whether or how such mutants can ameliorate their fitness costs. Using experimental evolution of Salmonella carrying RifR deletion or duplication mutations we identified compensatory amino acid substitution mutations within rpoA, rpoB or rpoC in 16 of 21 evolved lineages. Additionally, we found one lineage where a large deletion was compensated by duplication of adjacent amino acids (possibly to fill the gap within the protein structure), two lineages where mutations occurred outside of rpoABC, and two lineages where a duplication mutant reverted to the wild-type sequence. All but the two revertant mutants maintained the RifR phenotype. These data suggest that amino acid substitution mutations are the major compensatory mechanism regardless of the nature of the primary RifR mutation.


Assuntos
Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/genética , Mutação , Rifampina/farmacologia , Salmonella/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Salmonella/genética
17.
mBio ; 9(5)2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206172

RESUMO

Highly expressed genes are commonly located close to the origin of replication of bacterial chromosomes (OriC). This location skew is thought to reflect selective advantages associated with gene dosage effects during the replication cycle. The expression of constitutively expressed genes can vary up to fivefold based on chromosomal location, but it is not clear what level of variation would occur in naturally regulated operons. We tested the magnitude of the chromosome location effect using EF-Tu (tufA, tufB), an abundant protein whose cellular level correlates with, and limits, the maximum growth rate. We translocated the Salmonella tufB operon to four locations across the chromosome. The distance from OriC had only a small effect on growth rate, consistent with this operon having the natural ability to upregulate expression and compensate for reduced gene dosage. In contrast, when the total EF-Tu concentration was limiting for the growth rate (tufA deleted), we observed a strong gene dosage effect when tufB was located further from OriC. However, only a short period of experimental evolution was required before the bacteria adapted to this EF-Tu starvation situation by acquiring genetic changes that increased expression levels from the translocated tufB gene, restoring growth rates. Our findings demonstrate that, at least for the tufB operon, gene dosage is probably not the dominant force selecting for a chromosomal location close to OriC. We suggest that the colocation of highly expressed genes close to OriC might instead be selected because it enhances their coregulation during various growth states, with gene dosage being a secondary benefit.IMPORTANCE A feature of bacterial chromosomes is that highly expressed essential genes are usually located close to the origin of replication. Because bacteria have overlapping cycles of replication, genes located close to the origin will often be present in multiple copies, and this is thought to be of selective benefit where high levels of expression support high growth rate. However, the magnitude of this selective effect and whether other forces could be at play are poorly understood. To study this, we translocated a highly expressed essential operon, tufB, to different locations and measured growth fitness. We found that transcriptional regulation buffered the effects of translocation and that even under conditions where growth rate was reduced, genetic changes that increased the expression of tufB were easily and rapidly selected. We conclude, at least for tufB, that forces other than gene dosage may be significant in selecting for chromosomal location.


Assuntos
Dosagem de Genes , Regulação da Expressão Gênica , Óperon , Salmonella/genética , Transcrição Gênica , Genes Bacterianos , Fator Tu de Elongação de Peptídeos/genética , RNA Bacteriano/genética , RNA de Transferência/genética , Origem de Replicação/genética , Salmonella/crescimento & desenvolvimento
18.
Mol Microbiol ; 108(6): 697-710, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603442

RESUMO

Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF-Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. We measured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but for insertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.


Assuntos
Evolução Molecular , Família Multigênica , Recombinação Genética , Salmonella/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Sequências Repetitivas Dispersas , Mutagênese Insercional , Salmonella/classificação , Salmonella/metabolismo
19.
J Antimicrob Chemother ; 72(11): 3016-3024, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962020

RESUMO

OBJECTIVES: To determine whether the spectrum of mutations in marR in ciprofloxacin-resistant clinical isolates of Escherichia coli shows evidence of selection bias, either to reduce fitness costs, or to increase drug resistance. MarR is a repressor protein that regulates, via MarA, expression of the Mar regulon, including the multidrug efflux pump AcrAB-TolC. METHODS: Isogenic strains carrying 36 different marR alleles identified in resistant clinical isolates, or selected for resistance in vitro, were constructed. Drug susceptibility and relative fitness in growth competition assays were measured for all strains. The expression level of marA, and of various efflux pump components, as a function of specific mutations in marR, was measured by qPCR. RESULTS: The spectrum of genetic alterations in marR in clinical isolates is strongly biased against inactivating mutations. In general, the alleles found in clinical isolates conferred a lower level of resistance and imposed a lower growth fitness cost than mutations selected in vitro. The level of expression of MarA correlated well with the MIC of ciprofloxacin. This supports the functional connection between mutations in marR and reduced susceptibility to ciprofloxacin. CONCLUSIONS: Mutations in marR selected in ciprofloxacin-resistant clinical isolates are strongly biased against inactivating mutations. Selection favours mutant alleles that have the lowest fitness costs, even though these cause only modest reductions in drug susceptibility. This suggests that selection for high relative fitness is more important than selection for increased resistance in determining which alleles of marR will be selected in resistant clinical isolates.


Assuntos
Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Aptidão Genética , Mutação , Proteínas Repressoras/genética , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Proteínas de Ligação a DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
20.
Microb Cell ; 4(8): 275-277, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28845425

RESUMO

Staphylococcus aureus can produce small colony variants (SCVs) during infections. These cause significant clinical problems because they are difficult to detect in standard microbiological screening and are associated with persistent infections. The major causes of the SCV phenotype are mutations that inhibit respiration by inactivation of genes of the menadione or hemin biosynthesis pathways. This reduces the production of ATP required to support fast growth. Importantly, it also decreases cross-membrane potential in SCVs, resulting in decreased uptake of cationic compounds, with reduced susceptibility to aminoglycoside antibiotics as a consequence. Because SCVs are slow-growing (mutations in men genes are associated with growth rates in rich medium ~30% of the wild-type growth rate) bacterial cultures are very susceptible to rapid takeover by faster-growing mutants (revertants or suppressors). In the case of reversion, the resulting fast growth is obviously associated with the loss of antibiotic resistance. However, direct reversion is relatively rare due to the very small genetic target size for such mutations. We explored the phenotypic consequences of SCVs evolving faster growth by routes other than direct reversion, and in particular whether any of those routes allowed for the maintenance of antibiotic resistance. In a recent paper (mBio 8: e00358-17) we demonstrated the existence of several different routes of SCV evolution to faster growth, one of which maintained the antibiotic resistance phenotype. This discovery suggests that SCVs might be more adaptable and problematic that previously thought. They are capable of surviving as a slow-growing persistent form, before evolving into a significantly faster-growing form without sacrificing their antibiotic resistance phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA