Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Phys Chem B ; 118(18): 4717-26, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24758720

RESUMO

We report here specialized functions incorporated recently in the rigid-body docking software toolkit TagDock to utilize electron paramagnetic resonance derived (EPR-derived) interresidue distance measurements and spin-label accessibility data. The TagDock package extensions include a custom methanethiosulfonate spin label rotamer library to enable explicit, all-atom spin-label side-chain modeling and scripts to evaluate spin-label surface accessibility. These software enhancements enable us to better utilize the biophysical data routinely available from various spin-labeling experiments. To illustrate the power and utility of these tools, we report the refinement of an ankyrin:CDB3 complex model that exhibits much improved agreement with the EPR distance measurements, compared to model structures published previously.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Anquirinas/química , Algoritmos , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anquirinas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Multimerização Proteica , Software
2.
Biochemistry ; 52(30): 5051-64, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23865807

RESUMO

The 99-residue transmembrane C-terminal domain (C99, also known as ß-CTF) of the amyloid precursor protein (APP) is the product of the ß-secretase cleavage of the full-length APP and is the substrate for γ-secretase cleavage. The latter cleavage releases the amyloid-ß polypeptides that are closely associated with Alzheimer's disease. C99 is thought to form homodimers; however, the free energy in favor of dimerization has not previously been quantitated. It was also recently documented that cholesterol forms a 1:1 complex with monomeric C99 in bicelles. Here, the affinities for both homodimerization and cholesterol binding to C99 were measured in bilayered lipid vesicles using both electron paramagnetic resonance (EPR) and Förster resonance energy transfer (FRET) methods. Homodimerization and cholesterol binding were seen to be competitive processes that center on the transmembrane G700XXXG704XXXG708 glycine-zipper motif and adjacent Gly709. On one hand, the observed Kd for cholesterol binding (Kd = 2.7 ± 0.3 mol %) is on the low end of the physiological cholesterol concentration range in mammalian cell membranes. On the other hand, the observed K(d) for homodimerization (K(d) = 0.47 ± 0.15 mol %) likely exceeds the physiological concentration range for C99. These results suggest that the 1:1 cholesterol/C99 complex will be more highly populated than C99 homodimers under most physiological conditions. These observations are of relevance for understanding the γ-secretase cleavage of C99.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Sítios de Ligação , Colesterol/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Glicina/química , Humanos , Cinética , Bicamadas Lipídicas , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
J Magn Reson ; 218: 93-104, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22578560

RESUMO

Double Electron-Electron Resonance (DEER) has emerged as a powerful technique for measuring long range distances and distance distributions between paramagnetic centers in biomolecules. This information can then be used to characterize functionally relevant structural and dynamic properties of biological molecules and their macromolecular assemblies. Approaches have been developed for analyzing experimental data from standard four-pulse DEER experiments to extract distance distributions. However, these methods typically use an a priori baseline correction to account for background signals. In the current work an approach is described for direct fitting of the DEER signal using a model for the distance distribution which permits a rigorous error analysis of the fitting parameters. Moreover, this approach does not require a priori background correction of the experimental data and can take into account excluded volume effects on the background signal when necessary. The global analysis of multiple DEER data sets is also demonstrated. Global analysis has the potential to provide new capabilities for extracting distance distributions and additional structural parameters in a wide range of studies.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Simulação por Computador , Intervalos de Confiança , Cisteína/genética , Interpretação Estatística de Dados , Muramidase/química , Muramidase/genética , Mutação , Distribuição Normal , Conformação Proteica , Marcadores de Spin
4.
J Biol Chem ; 286(23): 20746-57, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21493712

RESUMO

The adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported. However, structural data on how these proteins assemble to form a stable complex have not been reported. In the current studies, site-directed spin labeling, in combination with electron paramagnetic resonance (EPR) and double electron-electron resonance, has been utilized to map the binding interfaces of the two proteins in the complex and to obtain inter-protein distance constraints. These data have been utilized to construct a family of structural models that are consistent with the full range of experimental data. These models indicate that an extensive area on the peripheral domain of cdb3 binds to ankyrin repeats 18-20 on the top loop surface of AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface for binding of cdb3 to AnkD34. Because a second dimer of cdb3 is known to bind to ankyrin repeats 7-12 of the membrane binding domain of ankyrin-R, the current models have significant implications regarding the structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to full-length ankyrin-R in the erythrocyte membrane.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Anquirinas/química , Membrana Eritrocítica/química , Modelos Moleculares , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Repetição de Anquirina , Anquirinas/genética , Anquirinas/metabolismo , Cristalografia por Raios X , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Humanos , Estrutura Quaternária de Proteína
5.
Biochemistry ; 46(36): 10248-57, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17696498

RESUMO

Previous studies have shown that a single P327R point mutation in the cytoplasmic domain of band 3 (cdb3) protein, known as band 3 Tuscaloosa, leads to a reduction in protein 4.2 content of the erythrocyte membrane and hemolytic anemia. Recent studies have shown that this point mutation does not dissociate the cdb3 dimer, nor does it lead to large-scale rearrangement of the protein structure (Bustos, S. P., and Reithmeier, R. A. F. (2006) Biochemistry 45, 1026-1034). To better define the structural changes in cdb3 that lead to the hemolytic anemia phenotype, site-directed spin labeling (SDSL), in combination with continuous wave electron paramagnetic resonance (EPR) and pulsed double electron-electron resonance (DEER) spectroscopies, has been employed in this study to compare the structure of the R327 variant with wild type P327 cdb3. It is confirmed that the P327R mutation does not dissociate the cdb3 dimer, nor does it change the spatial orientation of the two peripheral domains relative to the dimer interface. However, it does affect the packing of the C-terminal end of helix 10 of the dimerization arms in a subpopulation of cdb3 dimers, it leads to spectral changes at some residues in beta-strand 11 and in the N-terminal end of helix10, and it produces measurable spectral changes at other residues that are near the mutation site. The data indicate that the structural changes are subtle and are localized to one surface of the cdb3 dimer. The spectroscopic description of structural features of the P327R variant provides important clues about the location of one potential protein 4.2 binding surface on cdb3 as well as new insight into the structural basis of the membrane destabilization.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Arginina/genética , Citoplasma/química , Proteínas Mutantes/química , Prolina/genética , Esferocitose Hereditária/metabolismo , Dimerização , Ácido Edético/análogos & derivados , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Mutação/genética , Distribuição Normal , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise Espectral , Marcadores de Spin
6.
Biophys J ; 90(1): 340-56, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16214868

RESUMO

A tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra. Simulations demonstrate the sensitivity of electron paramagnetic resonance spectra to the orientation of the cones as a function of cone halfwidth and other parameters. For small cone halfwidths (< approximately 40 degrees ), simulated spectra are strongly dependent on the relative orientation of the cones. For larger cone halfwidths, spectra become independent of cone orientation. Tether-in-a-cone model simulations are analyzed using a convolution approach based on Fourier transforms. Spectra obtained by the Fourier convolution method more closely fit the tether-in-a-cone simulations as the halfwidth of the cone increases. The Fourier convolution method gives a reasonable estimate of the correct average distance, though the distance distribution obtained can be significantly distorted. Finally, the tether-in-a-cone model is successfully used to analyze experimental spectra from T4 lysozyme. These results demonstrate the utility of the model and highlight directions for further development.


Assuntos
Óxido Nítrico/química , Anisotropia , Bacteriófago T4/enzimologia , Biofísica/métodos , Simulação por Computador , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Análise de Fourier , Modelos Estatísticos , Muramidase/química , Óxidos de Nitrogênio/química , Distribuição Normal , Software , Marcadores de Spin , Termodinâmica
7.
Biochemistry ; 44(46): 15115-28, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16285715

RESUMO

The cytoplasmic domain of the anion exchange protein (cdb3) serves as a critical organizing center for protein-protein interactions that stabilize the erythrocyte membrane. The structure of the central core of cdb3, determined by X-ray crystallography from crystals grown at pH 4.8, revealed a compact dimer for residues 55-356 and unresolved N- and C-termini on each monomer [Zhang et al. (2000) Blood 96, 2925-2933]. Given that previous studies had suggested a highly asymmetric structure for cdb3 and that pH dependent structural transitions of cdb3 have been reported, the structure of cdb3 in solution at neutral pH was investigated via site-directed spin labeling in combination with conventional electron paramagnetic resonance (EPR) and double electron electron resonance (DEER) spectroscopies. These studies show that the structure of the central compact dimer (residues 55-356) is indistinguishable from the crystal structure determined at pH 4.8. N-Terminal residues 1-54 and C-terminal residues 357-379 are dynamically disordered and show no indications of stable secondary structure. These results establish a structural model for cdb3 in solution at neutral pH which represents an important next step in characterizing structural details of the protein-protein interactions that stabilize the erythrocyte membrane.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Estrutura Terciária de Proteína , Citoplasma/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fluorescência , Modelos Moleculares , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Marcadores de Spin , Triptofano/química
8.
J Clin Invest ; 111(5): 727-35, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618527

RESUMO

Prostaglandin E(2) (PGE(2)), a major COX metabolite, plays important roles in several facets of tumor biology. We characterized the contribution of the PGE(2) EP2 receptor to cancer-associated immune deficiency using EP2(-/-) mice. EP2(-/-) mice exhibited significantly attenuated tumor growth and longer survival times when challenged with MC26 or Lewis lung carcinoma cell lines as compared with their wild-type littermates. While no differences in T cell function were observed, PGE(2) suppressed differentiation of DCs from wild-type bone marrow progenitors, whereas EP2-null cells were refractory to this effect. Stimulation of cells in mixed lymphocyte reactions by wild-type DCs was suppressed by treatment with PGE(2), while EP2(-/-)-derived DCs were resistant to this effect. In vivo, DCs, CD4(+), and CD8(+) T cells were significantly more abundant in draining lymph nodes of tumor-bearing EP2(-/-) mice than in tumor-bearing wild-type mice, and a significant antitumor cytotoxic T lymphocyte response could be observed only in the EP2(-/-) animals. Our data demonstrate an important role for the EP2 receptor in PGE(2)-induced inhibition of DC differentiation and function and the diminished antitumor cellular immune responses in vivo.


Assuntos
Células Dendríticas/imunologia , Síndromes de Imunodeficiência/etiologia , Neoplasias Experimentais/imunologia , Receptores de Prostaglandina E/fisiologia , Animais , Células Dendríticas/efeitos dos fármacos , Dinoprostona/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Patológica/etiologia , Prostaglandina-Endoperóxido Sintases/fisiologia , Receptores de Prostaglandina E Subtipo EP2 , Linfócitos T/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA