Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(18): 8484-8492, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38640469

RESUMO

Co(aPPy) is one of the most stable and active molecular first-row transition-metal catalysts for proton reduction reported to date. Understanding the origin of its high performance via mechanistic studies could aid in developing even better catalysts. In this work, the catalytic mechanism of Co(aPPy) was electrochemically probed, in both organic solvents and water. We found that different mechanisms can occur depending on the solvent and the acidity of the medium. In organic solvent with a strong acid as the proton source, catalysis initiates directly after a single-electron reduction of CoII to CoI, whereas in the presence of a weaker acid, the cobalt center needs to be reduced twice before catalysis occurs. In the aqueous phase, we found drastically different electrochemical behavior, where the Co(aPPy) complex was found to be a precatalyst to a different electrocatalytic species. We propose that in this active catalyst, the pyridine ring has dissociated and acts as a proton relay at pH ≤ 5, which opens up a fast protonation pathway of the CoI intermediate and results in a high catalytic activity. Furthermore, we determined with constant potential bulk electrolysis that the catalyst is most stable at pH 3. The catalyst thus functions optimally at low pH in an aqueous environment, where the pyridine acts as a proton shuttle and where the high acidity also prevents catalyst deactivation.

2.
EES Catal ; 2(1): 262-275, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222062

RESUMO

Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.

3.
Chempluschem ; 88(4): e202300112, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042441

RESUMO

Electrocatalytic CO2 reduction processes are generally coupled with the oxidation of water. Process economics can greatly improve by replacing the water oxidation with a more valuable oxidation reaction, a process called paired electrolysis. Here we report the feasibility of pairing CO2 reduction with the oxidation of glycerol on Ni3 S2 /NF anodes to produce formate at both anode and cathode. Initially we optimized the oxidation of glycerol to maximize the Faraday efficiency to formate by using design of experiments. In flow cell electrolysis, excellent selectivity (up to 90 % Faraday efficiency) was achieved at high current density (150 mA/cm2 of geometric surface area). Then we successfully paired the reduction of CO2 with the oxidation of glycerol. A prerequisite for industrial application is to obtain reaction mixtures with a high concentration of formate to enable efficient downstream separation. We show that the anodic process is limited in formate concentration, as Faraday efficiency to formate greatly decreases when operating at 2.5 M formate (∼10 w%) in the reaction mixture due to over-oxidation of formate. We identify this as a major bottleneck for the industrial feasibility of this paired electrolysis process.

4.
Eur J Inorg Chem ; 2019(19): 2436-2442, 2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31423108

RESUMO

Metal ligand cooperativity (MLC) and frustrated Lewis pair (FLP) chemistry both feature the cooperative action of a Lewis acidic and a Lewis basic site on a substrate. A lot of work has been carried out in the field of FLPs to prevent Lewis adduct formation, which often reduces the FLP reactivity. Parallels are drawn between the two systems by looking at their reactivity with CO2, and we explore the role of steric bulk in preventing dimer formation in MLC systems.

5.
Inorg Chem ; 57(5): 2603-2608, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431436

RESUMO

The importance of relativity and dispersion in metallophilicity has been discussed in numerous studies. The existence of hybridization in the bonding between closed shell d10-d10 metal atoms has also been speculated, but the presence of attractive MO interaction in the metal-metal bond is still a matter of an ongoing debate. In this comparative study, a quantitative molecular orbital analysis and energy decomposition is carried out on the metallophilic interaction in atomic dimers (M+···M+) and molecular perpendicular [H3P-M-X]2 (where M = Cu, Ag, and Au; X = F, Cl, Br, and I). Our computational studies prove that besides the commonly accepted dispersive interactions, orbital interactions and Pauli repulsion also play a crucial role in the strength and length of the metal-metal bond. Although for M+···M+ the orbital interaction is larger than the Pauli repulsion, leading to a net attractive MO interaction, the bonding mechanism in perpendicular [H3P-M-X] dimers is different due to the larger separation between the donor and acceptor orbitals. Thus, Pauli repulsion is much larger, and two-orbital, four-electron repulsion is dominant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA