Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Comput Aided Mol Des ; 37(8): 339-355, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37314632

RESUMO

Identification of potential therapeutic candidates can be expedited by integrating computational modeling with domain aware machine learning (ML) models followed by experimental validation in an iterative manner. Generative deep learning models can generate thousands of new candidates, however, their physiochemical and biochemical properties are typically not fully optimized. Using our recently developed deep learning models and a scaffold as a starting point, we generated tens of thousands of compounds for SARS-CoV-2 Mpro that preserve the core scaffold. We utilized and implemented several computational tools such as structural alert and toxicity analysis, high throughput virtual screening, ML-based 3D quantitative structure-activity relationships, multi-parameter optimization, and graph neural networks on generated candidates to predict biological activity and binding affinity in advance. As a result of these combined computational endeavors, eight promising candidates were singled out and put through experimental testing using Native Mass Spectrometry and FRET-based functional assays. Two of the tested compounds with quinazoline-2-thiol and acetylpiperidine core moieties showed IC[Formula: see text] values in the low micromolar range: [Formula: see text] [Formula: see text]M and 3.41±0.0015 [Formula: see text]M, respectively. Molecular dynamics simulations further highlight that binding of these compounds results in allosteric modulations within the chain B and the interface domains of the Mpro. Our integrated approach provides a platform for data driven lead optimization with rapid characterization and experimental validation in a closed loop that could be applied to other potential protein targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Antivirais/química
2.
J Chem Inf Model ; 63(5): 1438-1453, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36808989

RESUMO

Direct-acting antivirals for the treatment of the COVID-19 pandemic caused by the SARS-CoV-2 virus are needed to complement vaccination efforts. Given the ongoing emergence of new variants, automated experimentation, and active learning based fast workflows for antiviral lead discovery remain critical to our ability to address the pandemic's evolution in a timely manner. While several such pipelines have been introduced to discover candidates with noncovalent interactions with the main protease (Mpro), here we developed a closed-loop artificial intelligence pipeline to design electrophilic warhead-based covalent candidates. This work introduces a deep learning-assisted automated computational workflow to introduce linkers and an electrophilic "warhead" to design covalent candidates and incorporates cutting-edge experimental techniques for validation. Using this process, promising candidates in the library were screened, and several potential hits were identified and tested experimentally using native mass spectrometry and fluorescence resonance energy transfer (FRET)-based screening assays. We identified four chloroacetamide-based covalent inhibitors of Mpro with micromolar affinities (KI of 5.27 µM) using our pipeline. Experimentally resolved binding modes for each compound were determined using room-temperature X-ray crystallography, which is consistent with the predicted poses. The induced conformational changes based on molecular dynamics simulations further suggest that the dynamics may be an important factor to further improve selectivity, thereby effectively lowering KI and reducing toxicity. These results demonstrate the utility of our modular and data-driven approach for potent and selective covalent inhibitor discovery and provide a platform to apply it to other emerging targets.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Pandemias , Inteligência Artificial , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
3.
Org Biomol Chem ; 21(19): 4028-4038, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36810586

RESUMO

Diurnal rhythmicity of cellular function is key to survival for most organisms on Earth. Many circadian functions are driven by the brain, but regulation of a separate set of peripheral rhythms remains poorly understood. The gut microbiome is a potential candidate for regulation of host peripheral rhythms, and this study sought to specifically examine the process of microbial bile salt biotransformation. To enable this work, an assay for bile salt hydrolase (BSH) that could work with small quantities of stool samples was necessary. Using a turn-on fluorescence probe, we developed a rapid and inexpensive assay to detect BSH enzyme activity with concentrations as low as 6-25 µM, which is considerably more robust than prior approaches. We successfully applied this rhodamine-based assay to detect BSH activity in a wide range of biological samples such as recombinant protein, whole cells, fecal samples, and gut lumen content from mice. We were able to detect significant BSH activity in small amounts of mouse fecal/gut content (20-50 mg) within 2 h, which illustrates its potential for use in various biological/clinical applications. Using this assay, we investigated the diurnal fluctuations of BSH activity in the large intestine of mice. By using time restricted feeding conditions, we provided direct evidence of 24 h rhythmicity in microbiome BSH activity levels and showed that this rhythmicity is influenced by feeding patterns. Our novel function-centric approach has potential to aid in the discovery of therapeutic, diet, or lifestyle interventions for correction of circadian perturbations linked to bile metabolism.


Assuntos
Amidoidrolases , Ácidos e Sais Biliares , Animais , Camundongos , Fluorescência , Amidoidrolases/metabolismo , Ritmo Circadiano
4.
Chem Res Toxicol ; 35(4): 585-596, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35347982

RESUMO

The gut microbiome is a key contributor to xenobiotic metabolism. Polycyclic aromatic hydrocarbons (PAHs) are an abundant class of environmental contaminants that have varying levels of carcinogenicity depending on their individual structures. Little is known about how the gut microbiome affects the rates of PAH metabolism. This study sought to determine the role that the gut microbiome has in determining the various aspects of metabolism in the liver, before and after exposure to two structurally different PAHs, benzo[a]pyrene and 1-nitropyrene. Following exposures, the metabolic rates of PAH metabolism were measured, and activity-based protein profiling was performed. We observed differences in PAH metabolism rates between germ-free and conventional mice under both unexposed and exposed conditions. Our activity-based protein profiling (ABPP) analysis showed that, under unexposed conditions, there were only minor differences in total P450 activity in germ-free mice relative to conventional mice. However, we observed distinct activity profiles in response to corn oil vehicle and PAH treatment, primarily in the case of 1-NP treatment. This study revealed that the repertoire of active P450s in the liver is impacted by the presence of the gut microbiome, which modifies PAH metabolism in a substrate-specific fashion.


Assuntos
Microbioma Gastrointestinal , Hidrocarbonetos Policíclicos Aromáticos , Animais , Benzo(a)pireno , Camundongos , Pirenos , Xenobióticos
5.
Methods Enzymol ; 664: 243-265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35331377

RESUMO

Bile is a digestive fluid produced in the liver and stored in the gallbladder. It participates in absorption of fatty nutrients and vitamins, and aids in elimination of metabolic waste and toxins. The major chemical components of bile are bile salts that, apart from their function in digestion, are also known to participate in cell signaling by binding host farnesoid X (FXR), vitamin D (VDR), and G-protein coupled bile acid (TGR5) receptors. Microbial bile salt hydrolases (BSHs) catalyze bile salt deconjugation, a gatekeeper reaction that is a prerequisite for all subsequent microbial transformations of bile acids. As a result, BSH determines the composition of the bile salt and acid pools, which in turn affects its nutrient absorption and signaling capabilities. BSH profiling remains a challenge due to a paucity of tools that enable scientists to study its function. In this chapter, we discuss current BSH profiling approaches and demonstrate a novel fluorogenic probe-based assay that circumvents laborious and resource intensive BSH quantification methods. Alongside our assay protocol, we provide the reader with a detailed method for microbial cell extraction from fecal matter. We also cover probe validation protocols that can be adapted for Michaelis-Menten analysis with any BSH expressing strain.


Assuntos
Microbioma Gastrointestinal , Amidoidrolases/metabolismo , Ácidos e Sais Biliares , Fezes , Humanos
6.
Chembiochem ; 22(8): 1448-1455, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33314683

RESUMO

Microbial bile salt hydrolases (BSHs) found in the intestine catalyze the deconjugation of taurine- and glycine-linked bile salts produced in the liver. The resulting bile salts are biological detergents and are critical in aiding lipophilic nutrient digestion. Therefore, the activity of BSHs in the gut microbiome is directly linked to human metabolism and overall health. Bile salt metabolism has also been associated with disease phenotypes such as liver and colorectal cancer. In order to reshape the gut microbiome to optimize bile salt metabolism, tools to characterize and quantify these processes must exist to enable a much-improved understanding of how metabolism goes awry in the face of disease, and how it can be improved through an altered lifestyle and environment. Furthermore, it is necessary to attribute metabolic activity to specific members and BSHs within the microbiome. To this end, we have developed activity-based probes with two different reactive groups to target bile salt hydrolases. These probes bind similarly to the authentic bile salt substrates, and we demonstrate enzyme labeling of active bile salt hydrolases by using purified protein, cell lysates, and in human stool.


Assuntos
Acrilamida/química , Amidoidrolases/metabolismo , Ácidos e Sais Biliares/metabolismo , Corantes Fluorescentes/química , beta-Lactamas/química , Acrilamida/síntese química , Acrilamida/metabolismo , Amidoidrolases/química , Ácidos e Sais Biliares/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Microbioma Gastrointestinal , Humanos , Hidrólise , Estrutura Molecular , beta-Lactamas/síntese química , beta-Lactamas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32850487

RESUMO

Even as the field of microbiome research has made huge strides in mapping microbial community composition in a variety of environments and organisms, explaining the phenotypic influences on the host by microbial taxa-both known and unknown-and their specific functions still remain major challenges. A pressing need is the ability to assign specific functions in terms of enzymes and small molecules to specific taxa or groups of taxa in the community. This knowledge will be crucial for advancing personalized therapies based on the targeted modulation of microbes or metabolites that have predictable outcomes to benefit the human host. This perspective article advocates for the combined use of standards-free metabolomics and activity-based protein profiling strategies to address this gap in functional knowledge in microbiome research via the identification of novel biomolecules and the attribution of their production to specific microbial taxa.


Assuntos
Microbiota , Humanos , Metabolômica
8.
Chembiochem ; 21(24): 3539-3543, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32761683

RESUMO

Animals produce bile to act as an antibacterial agent and to maximize the absorption of lipophilic nutrients in the gut. The physical properties of bile are largely dictated by amphipathic bile salt molecules, which also participate in signaling pathways by modulating physiological processes upon binding host receptors. Upon excretion of bile salts from the gall bladder into the intestine, the gut microbiota can create metabolites with modified signaling capabilities. The category and magnitude of bile salt metabolism can have positive or negative effects on the host. A key modification is bile salt hydrolysis, which is a prerequisite for all additional microbial transformations. We have synthesized five different fluorogenic bile salts for simple and continuous reporting of hydrolysis in both murine and human fecal samples. Our data demonstrate that most gut microbiomes have the highest capacity for hydrolysis of host-produced primary bile salts, but some microbially modified secondary bile salts also display significant turnover.


Assuntos
Ácidos e Sais Biliares/metabolismo , Corantes Fluorescentes/metabolismo , Animais , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Microbioma Gastrointestinal , Humanos , Hidrólise , Camundongos , Conformação Molecular
10.
Sci Rep ; 9(1): 1359, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718677

RESUMO

The microbiota of the mammalian gut plays a dynamic role in controlling host physiology. The effect of gut microbiota activity on host health is particularly evident in the case of bile homeostasis. Bile is produced by the host and is modified by the gut microbiota, which impacts the net hydrophobicity of the total bile acid pool, and also modulates host signaling pathways. A key mechanism by which the microbiota modify bile is through deconjugation of bile salts through bile salt hydrolase (BSH) enzymatic activity, which is postulated to be a prerequisite for all further microbial metabolism. BSH activity in the gut is largely considered to be beneficial for the host, and genes encoding BSHs are found in the genomes of many taxa found in over-the-counter probiotics. Despite the therapeutic relevance of this enzyme, there is no sensitive and simple assay for continuous monitoring of BSH activity, and there are no non-destructive means of characterizing its activity in whole cell or microbial community samples. Herein, we describe a continuous fluorescence assay that can be used for characterization of BSH activity with purified protein, cell lysates, whole cells, and in human gut microbiome samples. The method is a "turn-on" reporter strategy, which employs synthetic substrates that yield a fluorescent product upon BSH-dependent turnover. This assay is used to show the first in vivo characterization of BSH activity. We also demonstrate continuous, non-destructive quantification of BSH activity in a human fecal microbiome sample containing recombinant BSH.


Assuntos
Amidoidrolases/metabolismo , Ensaios Enzimáticos/métodos , Microbioma Gastrointestinal , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , Fluorescência , Humanos , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Clin Cancer Res ; 22(20): 5087-5096, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27154914

RESUMO

PURPOSE: c-Src has been shown to play a pivotal role in breast cancer progression, metastasis, and angiogenesis. In the clinic, however, the limited efficacy and high toxicity of existing c-Src inhibitors have tempered the enthusiasm for targeting c-Src. We developed a novel c-Src inhibitor (UM-164) that specifically binds the DFG-out inactive conformation of its target kinases. We hypothesized that binding the inactive kinase conformation would lead to improved pharmacologic outcomes by altering the noncatalytic functions of the targeted kinases. EXPERIMENTAL DESIGN: We have analyzed the anti-triple-negative breast cancer (TNBC) activity of UM-164 in a comprehensive manner that includes in vitro cell proliferation, migration, and invasion assays (including a novel patient-derived xenograft cell line, VARI-068), along with in vivo TNBC xenografts. RESULTS: We demonstrate that UM-164 binds the inactive kinase conformation of c-Src. Kinome-wide profiling of UM-164 identified that Src and p38 kinase families were potently inhibited by UM-164. We further demonstrate that dual c-Src/p38 inhibition is superior to mono-inhibition of c-Src or p38 alone. We demonstrate that UM-164 alters the cell localization of c-Src in TNBC cells. In xenograft models of TNBC, UM-164 resulted in a significant decrease of tumor growth compared with controls, with limited in vivo toxicity. CONCLUSIONS: In contrast with c-Src kinase inhibitors used in the clinic (1, 2), we demonstrate in vivo efficacy in xenograft models of TNBC. Our results suggest that the dual activity drug UM-164 is a promising lead compound for developing the first targeted therapeutic strategy against TNBC. Clin Cancer Res; 22(20); 5087-96. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteína Tirosina Quinase CSK , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Ligação Proteica/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ACS Chem Biol ; 11(5): 1296-304, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26895387

RESUMO

In the kinase field, there are many widely held tenets about conformation-selective inhibitors that have yet to be validated using controlled experiments. We have designed, synthesized, and characterized a series of kinase inhibitor analogues of dasatinib, an FDA-approved kinase inhibitor that binds the active conformation. This inhibitor series includes two Type II inhibitors that bind the DFG-out inactive conformation and two inhibitors that bind the αC-helix-out inactive conformation. Using this series of compounds, we analyze the impact that conformation-selective inhibitors have on target binding and kinome-wide selectivity.


Assuntos
Dasatinibe/análogos & derivados , Dasatinibe/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Galinhas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química
13.
J Mol Biol ; 427(18): 2931-47, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26003923

RESUMO

Protein homeostasis (proteostasis) is inextricably tied to cellular health and organismal lifespan. Aging, exposure to physiological and environmental stress, and expression of mutant and metastable proteins can cause an imbalance in the protein-folding landscape, which results in the formation of non-native protein aggregates that challenge the capacity of the proteostasis network (PN), increasing the risk for diseases associated with misfolding, aggregation, and aberrant regulation of cell stress responses. Molecular chaperones have central roles in each of the arms of the PN (protein synthesis, folding, disaggregation, and degradation), leading to the proposal that modulation of chaperone function could have therapeutic benefits for the large and growing family of diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In this review, we will discuss the current strategies used to tune the PN through targeting molecular chaperones and assess the potential of the chemical biology of proteostasis.


Assuntos
Envelhecimento/genética , Chaperonas Moleculares/química , Agregados Proteicos/genética , Dobramento de Proteína , Envelhecimento/patologia , Resposta ao Choque Térmico/genética , Humanos , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Agregados Proteicos/fisiologia , Conformação Proteica , Estresse Fisiológico
14.
ACS Chem Biol ; 10(6): 1387-91, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25793938

RESUMO

We have developed a modular approach to bisubstrate inhibition of protein kinases. We apply our methodology to c-Src and identify a highly selective bisubstrate inhibitor for this target. Our approach has yielded the most selective c-Src inhibitor to date, and the methodology to render the bisubstrate inhibitor cell-permeable provides a highly valuable tool for the study of c-Src signaling. In addition, we have applied our bisubstrate inhibitor to develop a novel screening methodology to identify non-ATP-competitive inhibitors of c-Src. Using this methodology, we have discovered the most potent non-ATP-competitive inhibitor reported to date. Our methodology is designed to be general and could be applicable to additional kinases inhibited by the promiscuous ATP-competitive fragment used in our studies.


Assuntos
Trifosfato de Adenosina/química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Ligação Competitiva , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Transdução de Sinais , Relação Estrutura-Atividade , Especificidade por Substrato , Quinases da Família src/química , Quinases da Família src/metabolismo
15.
ACS Med Chem Lett ; 4(8): 779-783, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24015327

RESUMO

On the basis of synergism observed between a selective c-Src kinase inhibitor with an HDAC inhibitor, the development of the first chimeric c-Src kinase and HDAC inhibitor is described. The optimized chimeric inhibitor is shown to be a potent c-Src and HDAC inhibitor. Chimeric inhibitor 4 is further shown to be highly efficacious in cancer cell lines and significantly more efficacious than a dual-targeting strategy using discrete c-Src and HDAC inhibitors.

16.
ACS Chem Biol ; 7(8): 1393-8, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22594480

RESUMO

Generating highly selective probes to interrogate protein kinase function in biological studies remains a challenge, and new strategies are required. Herein, we describe the development of the first highly selective and cell-permeable inhibitor of c-Src, a key signaling kinase in cancer. Our strategy involves extension of traditional inhibitor design by appending functionality proposed to interact with the phosphate-binding loop of c-Src. Using our selective inhibitor, we demonstrate that selective inhibition is significantly more efficacious than pan-kinase inhibition in slowing the growth of cancer cells. We also show that inhibition of c-Abl kinase, an off-target of most c-Src inhibitors, promotes oncogenic cell growth.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Trifosfato de Adenosina/química , Animais , Antineoplásicos/farmacologia , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proliferação de Células , Química Farmacêutica/métodos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Fibroblastos/citologia , Humanos , Cinética , Camundongos , Modelos Químicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfatos/química , Fosforilação , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/química , Transdução de Sinais , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA