Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ambio ; 53(4): 517-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324120

RESUMO

Drawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle.


Assuntos
Resiliência Psicológica , Humanos
2.
Glob Chang Biol ; 30(1): e17040, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273522

RESUMO

Climate change is predicted to cause milder winters and thus exacerbate soil freeze-thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze-thaw events. After one season of winter warming, which raised mean surface and soil (-8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming-induced increase in frost cycles improved soil microbial resilience to an experimental freeze-thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze-thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon-use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial-mediated biogeochemical cycles.


Assuntos
Resiliência Psicológica , Microbiologia do Solo , Estações do Ano , Solo/química , Carbono , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA