RESUMO
BACKGROUND: DNA methylation profiling may provide a more accurate measure of the smoking status than self-report and may be useful in guiding clinical interventions and forensic investigations. In the current study, blood DNA methylation profiles of nearly 800 Polish individuals were assayed using Illuminia EPIC and the inference of smoking from epigenetic data was explored. In addition, we focused on the role of the AHRR gene as a top marker for smoking and investigated its responsiveness to other lifestyle behaviors. RESULTS: We found > 450 significant CpGs associated with cigarette consumption, and overrepresented in various biological functions including cell communication, response to stress, blood vessel development, cell death, and atherosclerosis. The model consisting of cg05575921 in AHRR (p = 4.5 × 10-32) and three additional CpGs (cg09594361, cg21322436 in CNTNAP2 and cg09842685) was able to predict smoking status with a high accuracy of AUC = 0.8 in the test set. Importantly, a gradual increase in the probability of smoking was observed, starting from occasional smokers to regular heavy smokers. Furthermore, former smokers displayed the intermediate DNA methylation profiles compared to current and never smokers, and thus our results indicate the potential reversibility of DNA methylation after smoking cessation. The AHRR played a key role in a predictive analysis, explaining 21.5% of the variation in smoking. In addition, the AHRR methylation was analyzed for association with other modifiable lifestyle factors, and showed significance for sleep and physical activity. We also showed that the epigenetic score for smoking was significantly correlated with most of the epigenetic clocks tested, except for two first-generation clocks. CONCLUSIONS: Our study suggests that a more rapid return to never-smoker methylation levels after smoking cessation may be achievable in people who change their lifestyle in terms of physical activity and sleep duration. As cigarette smoking has been implicated in the literature as a leading cause of epigenetic aging and AHRR appears to be modifiable by multiple exogenous factors, it emerges as a promising target for intervention and investment.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores , Metilação de DNA , Epigênese Genética , Exercício Físico , Sono , Humanos , Metilação de DNA/genética , Masculino , Feminino , Sono/genética , Sono/fisiologia , Epigênese Genética/genética , Pessoa de Meia-Idade , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/sangue , Ilhas de CpG/genética , Fumar/genética , Polônia , Idoso , Proteínas RepressorasRESUMO
OBJECTIVES: Second to fourth digit ratio is widely known indicator of prenatal sex hormones proportion. Higher prenatal androgenization results in longer fourth finger and lower 2D:4D index. The aim of this study was to determine whether the 2D:4D digit ratio is associated with DNA methylation (DNAm) age dependently on sex. MATERIAL AND METHODS: The study included 182 adults (106 females and 76 males) with a mean age of 51.5 ± 13 years. The investigation consisted of three main parts: a survey, anthropometric dimensions measurements (fingers length) and methylome analysis using collected blood samples. Genome-wide methylation was analyzed using EPIC microarray technology. Epigenetic age and epigenetic age acceleration were calculated using several widely applied algorithms. RESULTS: Males with the female left hand pattern had more accelerated epigenetic age than those with the male pattern as calculated with PhenoAge and DNAmTL clocks. CONCLUSIONS: Finger female pattern 2D:4D above or equal to 1 in males is associated with epigenetic age acceleration, indicating that prenatal exposure to estrogens in males may be related to aging process in the later ontogenesis.
RESUMO
The purpose of this paper is to formulate recommendations for the disclosure of biological traces in the laboratory and the handling of forensic evidence submitted for identification tests, recommended by the Polish Speaking Working Group of the International Society for Forensic Genetics. The paper organizes the knowledge of the most relevant stages of preliminary analysis of biological traces based on both literature sources and those resulting from years of research practice. Recommendations formulated in the course of multi-stage expert consultations contained in this study should be used in the development of laboratory procedures applied during the execution.
Assuntos
Genética Forense , Humanos , Polônia , Genética Forense/normas , Genética Forense/métodos , Genética Forense/legislação & jurisprudência , Sociedades Científicas/normas , Impressões Digitais de DNA/normas , Revelação/normas , Revelação/legislação & jurisprudênciaRESUMO
While epigenetic age (EA) of mouse blood can be determined using DNA methylation analysis at three CpG sites in the Prima1, Hsf4 and Kcns1 genes it is not known whether this approach is useful for predicting vascular biological age. In this study we validated the 3-CpG estimator for age prediction in mouse blood, developed a new predictive model for EA in mouse aorta, and assessed whether epigenetic age acceleration (EAA) measured with blood and aorta samples correlates with age-dependent endothelial dysfunction. Endothelial function was characterized in vivo by MRI in 8-96-week-old C57BL/6 mice. Arterial stiffness was measured by USG-doppler. EA-related changes within 41 CpG sites in Prima1, Kcns1 and Hsf4 loci, were analyzed in the aorta and blood using bisulfite amplicon high-throughput sequencing. Progressive age-dependent endothelial dysfunction and changes in arterial stiffness were observed in 36-96-week-old C57BL/6 mice. Methylation levels of the investigated loci correlated with chronological age in blood and the aorta. The new model for EA estimation in aorta included three cytosines located in the Kcns1 and Hsf4, explained R2 = 87.8% of the variation in age, and predicted age with an mean absolute error of 9.6 weeks in the independent test set. EAA in the aorta was associated with endothelial dysfunction in the abdominal aorta and femoral artery what was consistent with the EAA direction estimated in blood samples. The rate of vascular biological ageing in mice, reflected by the age-dependent systemic endothelial dysfunction, could be estimated using DNA methylation measurements at three loci in aorta and blood samples.
Assuntos
Envelhecimento , Aorta , Metilação de DNA , Endotélio Vascular , Epigênese Genética , Camundongos Endogâmicos C57BL , Rigidez Vascular , Animais , Metilação de DNA/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Endotélio Vascular/fisiopatologia , Camundongos , Rigidez Vascular/genética , Rigidez Vascular/fisiologia , Masculino , Aorta/fisiopatologia , Aorta/diagnóstico por imagem , Ilhas de CpG/genética , Imageamento por Ressonância MagnéticaRESUMO
DNA methylation (DNAm) clocks hold promise for measuring biological age, useful for guiding clinical interventions and forensic identification. This study compared the commonly used DNAm clocks, using DNA methylation and SNP data generated from nearly 1000 human blood or buccal swab samples. We evaluated different preprocessing methods for age estimation, investigated the association of epigenetic age acceleration (EAA) with various lifestyle and sociodemographic factors, and undertook a series of novel genome-wide association analyses for different EAA measures to find associated genetic variants. Our results highlighted the Skin&Blood clock with ssNoob normalization as the most accurate predictor of chronological age. We provided novel evidence for an association between the practice of yoga and a reduction in the pace of aging (DunedinPACE). Increased sleep and physical activity were associated with lower mortality risk score (MRS) in our dataset. University degree, vegetable consumption, and coffee intake were associated with reduced levels of epigenetic aging, whereas smoking, higher BMI, meat consumption, and manual occupation correlated well with faster epigenetic aging, with FitAge, GrimAge, and DunedinPACE clocks showing the most robust associations. In addition, we found a novel association signal for SOCS2 rs73218878 (p = 2.87 × 10-8) and accelerated GrimAge. Our study emphasizes the importance of an optimized DNAm analysis workflow for accurate estimation of epigenetic age, which may influence downstream analyses. The results support the influence of genetic background on EAA. The associated SOCS2 is a member of the suppressor of cytokine signaling family known for its role in human longevity. The reported association between various risk factors and EAA has practical implications for the development of health programs to improve quality of life and reduce premature mortality associated with age-related diseases.
Assuntos
Yoga , Humanos , Café , Estudo de Associação Genômica Ampla , Qualidade de Vida , Envelhecimento/genética , Sono/genética , Carne , Epigênese Genética , Proteínas Supressoras da Sinalização de CitocinaRESUMO
The increasing use of plant evidence in forensic investigations gave rise to a powerful new discipline - Forensic Botany - that analyses micro- or macroscopic plant materials, such as the totality or fragments of an organ (i.e., leaves, stems, seeds, fruits, roots) and tissue (i.e., pollen grains, spores, fibers, cork) or its chemical composition (i. e., secondary metabolites, isotopes, DNA, starch grains). Forensic botanists frequently use microscopy, chemical analysis, and botanical expertise to identify and interpret evidence crucial to solving civil and criminal issues, collaborating in enforcing laws or regulations, and ensuring public health safeguards. The present work comprehensively examines the current state and future potential of Forensic Botany. The first section conveys the critical steps of plant evidence collection, documentation, and preservation, emphasizing the importance of these initial steps in maintaining the integrity of the items. It explores the different molecular analyses, covering the identification of plant species and varieties or cultivars, and discusses the limitations and challenges of these techniques in forensics. The subsequent section covers the diversity of Forensic Botany approaches, examining how plant evidence exposes food and pharmaceutical frauds, uncovers insufficient or erroneous labeling, traces illegal drug trafficking routes, and combats the illegal collection or trade of protected species and derivatives. National and global security issues, including the implications of biological warfare, bioterrorism, and biocrime are addressed, and a review of the contributions of plant evidence in crime scene investigations is provided, synthesizing a comprehensive overview of the diverse facets of Forensic Botany.
Assuntos
Botânica , Plantas , Plantas/genética , Medicina Legal/métodos , Pólen , SementesRESUMO
BACKGROUND: DNA methylation analysis has proven to be a powerful tool for age assessment. However, the implementation of epigenetic age prediction in diagnostics or routine forensic casework requires appropriate laboratory methods. In this study, we aimed to compare the performance of large-scale DNA methylation analysis protocols that show promise in terms of accuracy, throughput, multiplexing capacity, and high sensitivity. RESULTS: The protocols were designed to target a predefined panel of 161 genomic CG/CA sites from four known estimators of epigenetic age-related parameters, optimized and validated using artificially methylated controls or blood samples. We successfully targeted 96% of these loci using two enrichment protocols: Ion AmpliSeq™, an amplicon-based method integrated with Ion Torrent S5, and SureSelectXT Methyl-Seq, a hybridization-based method followed by MiSeq FGx sequencing. Both protocols demonstrated high accuracy and robustness. Although hybridization assays have greater multiplexing capabilities, the best overall performance was observed for the amplicon-based protocol with the lowest variability in DNA methylation at 25 ng of starting DNA, mean observed marker coverage of ~ 6.7 k reads, and accuracy of methylation quantification with a mean absolute difference between observed and expected methylation beta value of 0.054. The Ion AmpliSeq method correlated strongly with genome-scale EPIC microarray data (R = 0.91) and showed superiority in terms of methylation measurement accuracy. Method-to-method bias was accounted for by the use of linear transformation, which provided a highly accurate prediction of calendar age with a mean absolute error of less than 5 years for the VISAGE and Hannum age clocks used. The pace of aging (PoAm) and the mortality risk score (MRS) estimators included in our panel represent next-generation clocks, were found to have low to moderate correlations with the VISAGE and Hannum models (R < 0.75), and thus may capture different aspects of epigenetic aging. CONCLUSIONS: We propose a laboratory tool that allows the quantification of DNA methylation in cytosines underlying four different clocks, thus providing broad information on epigenetic aging while maintaining a reasonable number of CpG markers, opening the way to a wide range of applications in forensics, medicine, and healthcare.
Assuntos
Citosina , Metilação de DNA , Humanos , Pré-Escolar , Ilhas de CpG , Genômica/métodos , Envelhecimento/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Epigênese GenéticaRESUMO
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Neoplasias/genética , Neoplasias/terapiaRESUMO
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Assuntos
DNA , Genética Forense , Humanos , Fenótipo , DNA/genética , Medicina Legal , Pigmentação da Pele , Polimorfismo de Nucleotídeo Único , Cor de OlhoRESUMO
Physical fitness is a well-known correlate of health and the aging process and DNA methylation (DNAm) data can capture aging via epigenetic clocks. However, current epigenetic clocks did not yet use measures of mobility, strength, lung, or endurance fitness in their construction. We develop blood-based DNAm biomarkers for fitness parameters gait speed (walking speed), maximum handgrip strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake (VO2max) which have modest correlation with fitness parameters in five large-scale validation datasets (average r between 0.16-0.48). We then use these DNAm fitness parameter biomarkers with DNAmGrimAge, a DNAm mortality risk estimate, to construct DNAmFitAge, a new biological age indicator that incorporates physical fitness. DNAmFitAge is associated with low-intermediate physical activity levels across validation datasets (p = 6.4E-13), and younger/fitter DNAmFitAge corresponds to stronger DNAm fitness parameters in both males and females. DNAmFitAge is lower (p = 0.046) and DNAmVO2max is higher (p = 0.023) in male body builders compared to controls. Physically fit people have a younger DNAmFitAge and experience better age-related outcomes: lower mortality risk (p = 7.2E-51), coronary heart disease risk (p = 2.6E-8), and increased disease-free status (p = 1.1E-7). These new DNAm biomarkers provide researchers a new method to incorporate physical fitness into epigenetic clocks.
Assuntos
Biomarcadores Ambientais , Força da Mão , Feminino , Humanos , Masculino , Envelhecimento/genética , Aptidão Física , Metilação de DNA , Biomarcadores , Epigênese GenéticaRESUMO
Epilepsy is a chronic disorder of with a high prevalence and extensive health burden in almost all age groups of the population. This condition is resulted from disturbance in the balance between excitatory and inhibitory factors in the brain. Genetic elements that affect synaptic connectivity, receptors functions or ion channels have been shown to predispose individuals to the epilepsy. More recently, a body of evidence points to the role of non-coding part of the transcriptome in the pathology of epilepsy. Expression levels of NEAT1, H19, PVT1, ILF3-AS1, GAS5, ZFAS1, UCA1, MALAT1 and SNHG1 have been changed in epileptic patients or animal models of epilepsy. Moreover, circ_ANKMY2, circRNA-0067835 and circHivep2 are among circRNAs which are involved in the pathogenesis of epilepsy. Although the mechanistical impact of these transcripts in the pathogenesis of epilepsy has not been fully explored, disturbances in neuron plasticity, apoptosis or differentiation might be implicated in this process. Expression levels of lncRNAs can be used for discrimination of epileptic patients from normal controls or refractory patients from non-refractory ones. JAK/STAT, Wnt, PI3K/AKT and NF-κB signaling pathways are among the regulated pathways by lncRNAs in the context of epilepsy. In the present review, we summarize the role of lncRNAs and circRNAs in the pathogenesis of epilepsy.
Assuntos
Epilepsia , RNA Longo não Codificante , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Epilepsia/genética , Epilepsia/metabolismoRESUMO
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
RESUMO
Genetic prediction of different hair phenotypes can help reconstruct the physical appearance of an individual whose biological sample is analyzed in criminal and identification cases. Up to date, forensic prediction models for hair colour, hair shape, hair loss and hair greying have been developed, but studies investigating predictability of hair thickness and density traits are missing. First data suggesting overlapping associations in various hair features have emerged in recent years, suggesting partially common genetic basis and molecular mechanisms, and this knowledge can be used for predictive purposes. Here we aim to broaden our understanding of the genetics underlying head, facial and body hair thickness and density traits and examine the association for a set of literature SNPs. We characterize the overlap in SNP association for various hair phenotypes, the extent of genetic interactions and the potential for genetic prediction. The study involved 999 samples from Poland, genotyped for 240 SNPs with targeted next-generation sequencing. Logistic regression methods were applied for association and prediction analyses while entropy-based approach was used for interaction testing. As a result, we refined known associations for monobrow and hairiness (PAX3, 5q13.2, TBX) and identified two novel association signals in IGFBP5 and VDR. Both genes were among top significant loci, showed broad association with different hair-related traits and were implicated in multiple interaction effects. Overall, for 14.7% of SNPs previously associated with head hair loss and/or hair shape, a positive signal of association was revealed with at least one hair feature studied in the current research. Overlap in association with at least two hair-related traits was demonstrated for 24 distinct loci. We showed that the associated SNPs explain â¼5-30% of the variation observed in particular hair traits and allow moderate accuracy of prediction. The highest accuracy was achieved for hairiness level prediction in females (AUC = 0.69 for the "none", 0.69 for the "low" and 0.76 for the "excessive" hairiness category) and monobrow (AUC = 0.69 for the "none", 0.62 for the "slight" and 0.70 for the "significant" monobrow category) with 33% of the variation in hairiness level in females explained by 7 SNPs and age, and 20% of the variation in monobrow captured by 7 SNPs and sex. Our study presents clear evidence of pleiotropy and epistasis in the genetics of hair traits. The acquired knowledge may have practical application in forensics, as well as in the cosmetic industry and anthropological research.
Assuntos
DNA , Cor de Cabelo , Alopecia , DNA/genética , Feminino , Cabelo , Cor de Cabelo/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The idea of forensic DNA intelligence is to extract from genomic data any information that can help guide the investigation. The clues to the externally visible phenotype are of particular practical importance. The high heritability of the physical phenotype suggests that genetic data can be easily predicted, but this has only become possible with less polygenic traits. The forensic community has developed DNA-based predictive tools by employing a limited number of the most important markers analysed with targeted massive parallel sequencing. The complexity of the genetics of many other appearance phenotypes requires big data coupled with sophisticated machine learning methods to develop accurate genomic predictors. A significant challenge in developing universal genomic predictive methods will be the collection of sufficiently large data sets. These should be created using whole-genome sequencing technology to enable the identification of rare DNA variants implicated in phenotype determination. It is worth noting that the correctness of the forensic sketch generated from the DNA data depends on the inclusion of an age factor. This, however, can be predicted by analysing epigenetic data. An important limitation preventing whole-genome approaches from being commonly used in forensics is the slow progress in the development and implementation of high-throughput, low DNA input sequencing technologies. The example of palaeoanthropology suggests that such methods may possibly be developed in forensics.
Assuntos
DNA/análise , DNA/genética , Genética Forense/métodos , Genômica/métodos , Aparência Física , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , HumanosRESUMO
DNA methylation has become one of the most useful biomarkers for age prediction and body fluid identification in the forensic field. Therefore, several assays have been developed to detect age-associated and body fluid-specific DNA methylation changes. Among the many methods developed, SNaPshot-based assays should be particularly useful in forensic laboratories, as they permit multiplex analysis and use the same capillary electrophoresis instrumentation as STR analysis. However, technical validation of any developed assays is crucial for their proper integration into routine forensic workflow. In the present collaborative exercise, two SNaPshot multiplex assays for age prediction and a SNaPshot multiplex for body fluid identification were tested in twelve laboratories. The experimental set-up of the exercise was designed to reflect the entire workflow of SNaPshot-based methylation analysis and involved four increasingly complex tasks designed to detect potential factors influencing methylation measurements. The results of body fluid identification from each laboratory provided sufficient information to determine appropriate age prediction methods in subsequent analysis. In age prediction, systematic measurement differences resulting from the type of genetic analyzer used were identified as the biggest cause of DNA methylation variation between laboratories. Also, the use of a buffer that ensures a high ratio of specific to non-specific primer binding resulted in changes in DNA methylation measurement, especially when using degenerate primers in the PCR reaction. In addition, high input volumes of bisulfite-converted DNA often caused PCR failure, presumably due to carry-over of PCR inhibitors from the bisulfite conversion reaction. The proficiency of the analysts and experimental conditions for efficient SNaPshot reactions were also important for consistent DNA methylation measurement. Several bisulfite conversion kits were used for this study, but differences resulting from the use of any specific kit were not clearly discerned. Even when different experimental settings were used in each laboratory, a positive outcome of the study was a mean absolute age prediction error amongst participant's data of only 2.7 years for semen, 5.0 years for blood and 3.8 years for saliva.
Assuntos
Líquidos Corporais , Metilação de DNA , Pré-Escolar , Ilhas de CpG/genética , Genética Forense/métodos , Humanos , SalivaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the recently emerged virus responsible for the COVID-19 pandemic. Clinical presentation can range from asymptomatic disease and mild respiratory tract infection to severe disease with lung injury, multiorgan failure, and death. SARS-CoV-2 is the third animal coronavirus to emerge in humans in the 21st century, and coronaviruses appear to possess a unique ability to cross borders between species and infect a wide range of organisms. This is somewhat surprising as, except for the requirement of host cell receptors, cell-pathogen interactions are usually species-specific. Insights into these host-virus interactions will provide a deeper understanding of the process of SARS-CoV-2 infection and provide a means for the design and development of antiviral agents. In this study, we describe a complex analysis of SARS-CoV-2 infection using a genome-wide CRISPR-Cas9 knock-out system in HeLa cells overexpressing entry receptor angiotensin-converting enzyme 2 (ACE2). This platform allows for the identification of factors required for viral replication. This study was designed to include a high number of replicates (48 replicates; 16 biological repeats with 3 technical replicates each) to prevent data instability, remove sources of bias, and allow multifactorial bioinformatic analyses in order to study the resulting interaction network. The results obtained provide an interesting insight into the replication mechanisms of SARS-CoV-2.
Assuntos
SARS-CoV-2/fisiologia , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Sistemas CRISPR-Cas , Biologia Computacional , Genoma Humano/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/patogenicidadeRESUMO
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-ß, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Assuntos
Envelhecimento/metabolismo , Cardiomiopatias/metabolismo , Nefropatias/metabolismo , Cirrose Hepática/metabolismo , MicroRNAs/metabolismo , Fibrose Pulmonar/metabolismo , RNA Longo não Codificante/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Nefropatias/genética , Nefropatias/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , MicroRNAs/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Longo não Codificante/genética , Transdução de SinaisRESUMO
DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.
Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epigênese Genética , Modelos Genéticos , Sêmen , Adulto , Fatores Etários , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Adulto JovemRESUMO
DNA methylation-based clocks provide the most accurate age estimates with practical implications for clinical and forensic genetics. However, the effects of external factors that may influence the estimates are poorly studied. Here, we evaluated the effect of alcohol consumption on epigenetic age prediction in a cohort of extreme alcohol abusers. Blood samples from deceased alcohol abusers and age- and sex-matched controls were analyzed using the VISAGE enhanced tool for age prediction from somatic tissues that enables examination of 44 CpGs within eight age markers. Significantly altered DNA methylation was recorded for alcohol abusers in MIR29B2CHG. This resulted in a mean predicted age of 1.4 years higher compared to the controls and this trend increased in older individuals. The association of alcohol abuse with epigenetic age acceleration, as determined by the prediction analysis performed based on MIR29B2CHG, was small but significant (ß = 0.190; P-value = 0.007). However, the observed alteration in DNA methylation of MIR29B2CHG had a non-significant effect on age estimation with the VISAGE age prediction model. The mean absolute error in the alcohol-abusing cohort was 3.1 years, compared to 3.3 years in the control group. At the same time, upregulation of MIR29B2CHG expression may have a biological function, which merits further studies.
Assuntos
Alcoolismo , Idoso , Envelhecimento/genética , Alcoolismo/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Humanos , LactenteRESUMO
We detail the development of the ancestry informative single nucleotide polymorphisms (SNPs) panel forming part of the VISAGE Basic Tool (BT), which combines 41 appearance predictive SNPs and 112 ancestry predictive SNPs (three SNPs shared between sets) in one massively parallel sequencing (MPS) multiplex, whereas blood-based age analysis using methylation markers is run in a parallel MPS analysis pipeline. The selection of SNPs for the BT ancestry panel focused on established forensic markers that already have a proven track record of good sequencing performance in MPS, and the overall SNP multiplex scale closely matched that of existing forensic MPS assays. SNPs were chosen to differentiate individuals from the five main continental population groups of Africa, Europe, East Asia, America, and Oceania, extended to include differentiation of individuals from South Asia. From analysis of 1000 Genomes and HGDP-CEPH samples from these six population groups, the BT ancestry panel was shown to have no classification error using the Bayes likelihood calculators of the Snipper online analysis portal. The differentiation power of the component ancestry SNPs of BT was balanced as far as possible to avoid bias in the estimation of co-ancestry proportions in individuals with admixed backgrounds. The balancing process led to very similar cumulative population-specific divergence values for Africa, Europe, America, and Oceania, with East Asia being slightly below average, and South Asia an outlier from the other groups. Comparisons were made of the African, European, and Native American estimated co-ancestry proportions in the six admixed 1000 Genomes populations, using the BT ancestry panel SNPs and 572,000 Affymetrix Human Origins array SNPs. Very similar co-ancestry proportions were observed down to a minimum value of 10%, below which, low-level co-ancestry was not always reliably detected by BT SNPs. The Snipper analysis portal provides a comprehensive population dataset for the BT ancestry panel SNPs, comprising a 520-sample standardised reference dataset; 3445 additional samples from 1000 Genomes, HGDP-CEPH, Simons Foundation and Estonian Biocentre genome diversity projects; and 167 samples of six populations from in-house genotyping of individuals from Middle East, North and East African regions complementing those of the sampling regimes of the other diversity projects.