Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(2): 505-517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167865

RESUMO

Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.


Assuntos
Mitocôndrias , Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Camundongos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Fatores de Proteção , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Modelos Animais de Doenças , Masculino , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
3.
Mol Psychiatry ; 28(4): 1813-1826, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36127429

RESUMO

Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , DNA Mitocondrial/genética , Biomarcadores/líquido cefalorraquidiano , Micropeptídeos
4.
Gut Microbes ; 14(1): 2143225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36409161

RESUMO

The gut microbial ecosystem exhibits a complex bidirectional communication with the host and is one of the key contributing factors in determining mucosal immune homeostasis or an inflammatory state. Opioid use has been established to induce gut microbial dysbiosis consistent with increased intestinal tissue inflammation. In this study, we investigated the role of infiltrated immune cells in morphine-induced intestinal tissue damage and gut microbial dysbiosis in mice. Results reveal a significant increase in chemokine expression in intestinal tissues followed by increased neutrophil infiltration post morphine treatment which is direct consequence of a dysbiotic microbiome since the effect is attenuated in antibiotics treated animals and in germ-free mice. Neutrophil neutralization using anti-Ly6G monoclonal antibody showed a significant decrease in tissue damage and an increase in tight junction protein organization. 16S rRNA sequencing on intestinal samples highlighted the role of infiltrated neutrophils in modulating microbial community structure by providing a growth benefit for pathogenic bacteria, such as Enterococcus, and simultaneously causing a significant depletion of commensal bacteria, such as Lactobacillus. Taken together, we provide the first direct evidence that neutrophil infiltration contributes to morphine-induced intestinal tissue damage and gut microbial dysbiosis. Our findings implicate that inhibition of neutrophil infiltration may provide therapeutic benefits against gastrointestinal dysfunctions associated with opioid use.


Assuntos
Microbioma Gastrointestinal , Microbiota , Transtornos Relacionados ao Uso de Opioides , Animais , Camundongos , Infiltração de Neutrófilos , Disbiose/induzido quimicamente , Morfina , Analgésicos Opioides , RNA Ribossômico 16S/genética
5.
Front Neurol ; 13: 884216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677336

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an imminent threat to human health and public safety. ACE2 and transmembrane serine protease 2 proteins on host cells provide the viral entry point to SARS-CoV-2. Although SARS-CoV-2 mainly infects the respiratory system, there have been reports of viral neurotropism and central nervous system injury as indicated by plasma biomarkers, including neurofilament light chain protein and glial fibrillary acidic protein. Even with a small proportion of infections leading to neurological manifestation, the overall number remains high. Common neurological manifestations of SARS-CoV-2 infection include anosmia, ageusia, encephalopathy, and stroke, which are not restricted to only the most severe infection cases. Opioids and opioid antagonists bind to the ACE2 receptor and thereby have been hypothesized to have therapeutic potential in treating COVID-19. However, in the case of other neurotropic viral infections such as human immunodeficiency virus (HIV), opioid use has been established to exacerbate HIV-mediated central nervous system pathogenesis. An analysis of electronic health record data from more than 73 million patients shows that people with Substance Use Disorders are at higher risk of contracting COVID-19 and suffer worse consequences then non-users. Our in-vivo and in-vitro unpublished studies show that morphine treatment causes increased expression of ACE2 in murine lung and brain tissue as early as 24 h post treatment. At the same time, we also observed morphine and lipopolysaccharides treatment lead to a synergistic increase in ACE2 expression in the microglial cell line, SIM-A9. This data suggests that opioid treatment may potentially increase neurotropism of SARS-CoV-2 infection. We have previously shown that opioids induce gut microbial dysbiosis. Similarly, gut microbiome alterations have been reported with SARS-CoV-2 infection and may play a role in predicting COVID-19 disease severity. However, there are no studies thus far linking opioid-mediated dysbiosis with the severity of neuron-specific COVID-19 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA