Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38173312

RESUMO

Xanthomonas euvesicatoria is a major cause of bacterial spot disease in various crops. The present study was focused on the pathosystem pepper (Capsicum annuum L.) - X. euvesicatoria 269p (wild strain). The infectious process was studied using several different modes of in vivo inoculation under controlled conditions. The spread of the pathogen in different parts of the plants was monitored by a new qPCR procedure developed for the detection of X. euvesicatoria, as well as by re-isolation of viable bacterial cells. Photosynthesis, the number of viable pathogens, oxidative stress markers, activities of the main antioxidant enzymes, and levels of nonenzymatic antioxidants in the novel single-leaf model system were studied. The most important observation is that the invasion of the pathogen causes local infection and the dissemination of bacteria to the healthy parts of the host is blocked. The plants limit bacterial colonization around the entry points. Oxidative burst and alterations in antioxidant defenses are detected in infectious leaf lesions. Localized ROS overproduction resembles a hypersensitive response, but several differences can be observed. We assumed that pepper plants are more likely to manifest an intermediate phenotype, similar to lesions simulating disease or leaf flecking. By localizing the infection, possibly involving oxidative stress, the plant survives. However, the same applies to bacteria. The pathogen multiplies at the infection spots and is transmitted to other plants. Our conclusion is that the intermediate phenotype in the studied pathosystem is an example of long and successful co-evolution for both species.


Assuntos
Capsicum , Xanthomonas , Antioxidantes , Estresse Oxidativo , Alimentos , Folhas de Planta/genética , Xanthomonas/genética , Capsicum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836088

RESUMO

The present study was focused on the pathosystem pepper plants (Capsicum annuum L.)-phytopathogenic bacterium X. euvesicatoria (wild strain 269p)-bacteriophage BsXeu269p/3 and the possibility of bacteriophage-mediated biocontrol of the disease. Two new model systems were designed for the monitoring of the effect of the phage treatment on the infectious process in vivo. The spread of the bacteriophage and the pathogen was monitored by qPCR. A new pair of primers for phage detection via qPCR was designed, as well as probes for TaqMan qPCR. The epiphytic bacterial population and the potential bacteriolytic effect of BsXeu269p/3 in vivo was observed by SEM. An aerosol-mediated transmission model system demonstrated that treatment with BsXeu269p/3 reduced the amount of X. euvesicatoria on the leaf surface five-fold. The needle-pricking model system showed a significant reduction of the amount of the pathogen in infectious lesions treated with BsXeu269p/3 (av. 59.7%), compared to the untreated control. We found that the phage titer is 10-fold higher in the infection lesions but it was still discoverable even in the absence of the specific host in the leaves. This is the first report of in vivo assessment of the biocontrol potential of locally isolated phages against BS pathogen X. euvesicatoria in Bulgaria.

3.
Plants (Basel) ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570956

RESUMO

Waterlogging and drought disrupt crop development and productivity. Triticale is known to be relatively tolerant to different stress factors. In natural conditions, plants are rather subjected to multiple environmental factors. Serrate® (Syngenta) is a systemic selective herbicide suitable for cereal crops such as triticale and wheat to restrain annual grass and broadleaf weeds. Triticale (×Triticosecale Wittm., cv. Rozhen) was grown as soil culture under controlled conditions. Seventeen-day-old plantlets were leaf sprayed with Serrate®. The water stress (drought or waterlogging) was applied after 72 h for 7 days, and then the seedlings were left for recovery. The herbicide does not provoke sharp alterations in the antioxidant state (stress markers level, and antioxidant and xenobiotic-detoxifying enzymes activity). The water stresses and combined treatments enhanced significantly the content of stress markers (malondialdehyde, proline, hydrogen peroxide), non-enzymatic (total phenolics and thiol groups-containing compounds), and enzymatic (activities of superoxide dismutase, catalase, guaiacol peroxidase, glutathione reductase) antioxidants, and xenobiotic-detoxifying enzymes (activities of glutathione S-transferase, NADPH:cytochrome P450 reductase, NADH:cytochrome b5 reductase). These effects were more severely expressed after the drought stress, suggesting that this cultivar is more tolerant to waterlogging than to drought stress.

4.
Plants (Basel) ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501291

RESUMO

The physiological responses of wheat and maize seedlings to exogenous auxin-type compounds 1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate (TA-14) application prior to polyethyleneglycol-6000 (PEG) treatment were studied. PEG treatment inhibited seedlings growth and caused alterations in their antioxidant defence which was crop-specific. PEG increased the non-enzymatic antioxidants along with inhibition of enzymatic antioxidant activity in wheat, while in maize the opposite effects were found. The TA-12 and TA-14 applied alone increased most of the growth parameters measured in both crops, as well as the catalase activity and protein content of wheat. The growth of PEG-treated wheat and maize plants was improved by foliar spray with TA-compounds (TAs). Application of TAs before PEG treatment maintained low-molecular weight thiol-containing compounds and protein contents, and catalase and peroxidase activities close to the control levels. This was better expressed in maize than in wheat seedlings. The results showed that the preliminary application of TA-12 and TA-14 can reduce the adverse effects of moderate water deficit by crop-specific adjustment of the antioxidant defence to counteract stress.

5.
Life (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34833032

RESUMO

The potential of brassinosteroids to modulate the physiological responses of winter wheat (Triticum aestivum L.) to herbicide stress was evaluated. Young winter wheat seedlings were treated with 24-epibrassinolide (EBL) and 24 h later were sprayed with glyphosate. The physiological responses of treated plants were assessed 14 days after herbicide application. Wheat growth was noticeably inhibited by glyphosate. The herbicide application significantly increased the content of the stress markers proline and malondialdehyde (MDA) evidencing oxidative damage. The content of phenolic compounds was decreased in the herbicide-treated plants. Slight activation of superoxide dismutase (SOD) and catalase (CAT) and considerable increase of glutathione reductase (GR) and guaiacol peroxidase (POX) activities were found. Increased POX and glutathione S-transferase (GST) activities were anticipated to be involved in herbicide detoxification. Conjugation with glutathione in herbicide-treated plants could explain the reduction of thiols suggesting unbalanced redox state. EBL application did not alter the plant growth but a moderate activation of antioxidant defense (POX, GR, and CAT activities and phenolic levels) and detoxifying enzyme GST was observed. The hormonal priming provoked a slight decrease in MDA and proline levels. The results demonstrate that EBL-pretreatment partly restored shoot growth and has a potential to mitigate the oxidative damages in glyphosate-treated plants through activation of the enzymatic antioxidant defense and increase of the phenolic compounds.

6.
Plants (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208367

RESUMO

Waterlogging impairs crop development and considerably affects plant productivity worldwide. Wheat is sensitive to waterlogging. Serrate® (Syngenta) is a selective herbicide controlling annual grass and broadleaf weeds for use in wheat. To extend the existing information about the physiological effects of selective herbicides (Serrate® in particular) and subsequent waterlogging in wheat, we monitored phenotype alterations and examined key enzymatic and non-enzymatic antioxidant defense systems together with typical oxidative stress biomarkers. Seventeen-day-old wheat (Triticum asetivum L., cv. Sadovo-1) plants were sprayed with Serrate®; 72 h later, waterlogging was applied for 7 days, and then seedlings were left to recover for 96 h. The herbicide did not alter plant phenotype and increased antioxidant defense, along with H2O2 content, confirming the wheat's tolerance to Serrate®. Evident yellowing and wilting of the leaves were observed at 96 h of recovery in waterlogged wheat, which were stronger in plants subjected to Serrate® + waterlogging. Waterlogging alone and herbicide + waterlogging gradually enhanced the content of stress markers (malondialdehyde, proline, and H2O2), non-enzymatic antioxidants (low-molecular thiols and total phenolics), and the activity of superoxide dismutase, guaiacol peroxidase, and glutathione reductase. The effects of herbicide + waterlogging were stronger than those of waterlogging alone even during recovery, suggesting that Serrate® interacted synergistically with the subsequently applied flooding.

7.
Plants (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918750

RESUMO

Drought is a major environmental constrain with a deleterious effect on plant development leading to a considerable reduction of crop productivity worldwide. Wheat is a relatively drought tolerant crop during the vegetative stage. The herbicide Serrate® (Syngenta) is a preparation containing two active chemical substances with different modes of action, which inhibit the biosynthesis of fatty and amino acids. It is commonly used as a systemic and selective chemical agent to control annual grass and broadleaf weeds in cereal crops and particularly in wheat, which is tolerant to Serrate®. Seventeen-day-old wheat seedlings (Triticum aestivum L., cv. Sadovo-1) grown as soil culture under controlled conditions were sprayed with an aqueous solution of Serrate®. Seventy-two hours later the plantlets were subjected to drought stress for seven days to reach a severe water deficit followed by four days of recovery with a normal irrigation regime. Oxidative stress markers, non-enzymatic, and enzymatic antioxidants were analyzed in the leaves of plants from the different treatment groups (herbicide-treated, droughts-stressed, and individuals which were consecutively subjected to both treatments) at 0, 96, and 168 h of drought stress, and after 96 h of recovery. Herbicide treatment did not alter substantially the phenotype and growth parameters of the above-ground plant parts. It provoked a moderate increase in phenolics, thiol-containing compounds, catalase, superoxide dismutase, glutathione reductase, and H2O2. However, significant variations of malondialdehyde, proline, and peroxidase activity caused by the sole application of the herbicide were not detected during the experimental period. Drought and herbicide + drought treatments caused significant growth inhibition, increased oxidative stress markers, and activation of enzymatic and non-enzymatic antioxidant defense reaching the highest levels at 168 h of stress. Plant growth was restored after 96 h of recovery and the levels of the monitored biochemical parameters showed a substantial decline. The herbicide provoked an extra load of oxidative stress-related biochemical components which did not aggravate the phenotypic and growth traits of plants subjected to drought, since they exhibited a good physiological status upon recovery.

8.
Physiol Plant ; 171(2): 200-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32548914

RESUMO

Recent studies have demonstrated that exogenous polyamines have protective effects under various stress condition. A broader understanding of the role of the polyamine pool fine regulation and the alterations of polyamine-related physiological processes could be obtained by comparing the stress effects in different genotypes. In this study, the impact of pre-treatment with putrescine in response to osmotic stress was investigated in the drought-tolerant Katya and drought-sensitive Zora wheat (Triticum aestivum) cultivars. Photosynthetic performance, in vivo thermoluminescence emission from leaves, leaf temperature, polyamine and salicylic acid levels, contents of osmoprotectants, and activities of antioxidant enzymes in the leaves were investigated not only to reveal differences in the physiological processes associated to drought tolerance, but to highlight the modulating strategies of polyamine metabolism between a drought-tolerant and a drought-sensitive wheat genotype. Results showed that the tolerance of Katya under osmotic stress conditions was characterized by higher photosynthetic ability, stable charge separation across the thylakoid membrane in photosystem II, higher proline accumulation and antioxidant activity. Thermoluminescence also revealed differences between the two varieties - a downshift of the B band and an increase of the afterglow band under osmotic stress in Zora, providing original complementary information to leaf photosynthesis. Katya variety exhibited higher constitutive levels of the signaling molecules putrescine and salicylic acid compared to the sensitive Zora. However, responses to exogenous putrescine were more advantageous for the sensitive variety under PEG treatment, which may be in relation with the decreased catabolism of polyamines, suggesting the increased need for polyamine under stress conditions.


Assuntos
Secas , Triticum , Osmorregulação , Putrescina , Plântula , Estresse Fisiológico , Triticum/genética
9.
Plant Physiol Biochem ; 45(9): 691-5, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17761430

RESUMO

We studied the effect of salinity on the activity of microsomal NADPH:cytochrome P450 reductase (CPR, EC 1.6.2.4) and NADH:ferricytochrome b(5) oxidoreductase (B5R, EC 1.6.2.2) in two dicotyledonous plant species differing in their sensitivity to salt, cotton (Gossypium hirsutum L. cv Ogosta) and common bean (Phaseolus vulgaris L. cv Dobrujanski 7). A significant inhibition of fresh weight of salt-treated bean plants was observed, while cotton was affected to a much lesser degree. NaCl application resulted in a significant increase in the activity of both reductases, but was more pronounced in salt-tolerant cotton. We suppose that alterations in B5R and CPR activities may be targeted to the maintenance of membrane lipids. Most probably, plants use both enzymes (B5R and CPR) and their respective electron donors (NADH and NADPH) to reduce cytochrome b(5), which can donate reducing equivalents to a series of lipid-modification reactions such as desaturation and hydroxylation.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Gossypium/enzimologia , Microssomos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Phaseolus/enzimologia , Cloreto de Sódio/farmacologia , Citocromo-B(5) Redutase/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Gossypium/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Phaseolus/efeitos dos fármacos , Phaseolus/genética , Raízes de Plantas , Brotos de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA