Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS J ; 25(4): 60, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322223

RESUMO

Current regulatory guidelines on drug-food interactions recommend an early assessment of food effect to inform clinical dosing instructions, as well as a pivotal food effect study on the to-be-marketed formulation if different from that used in earlier trials. Study waivers are currently only granted for BCS class 1 drugs. Thus, repeated food effect studies are prevalent in clinical development, with the initial evaluation conducted as early as the first-in-human studies. Information on repeated food effect studies is not common in the public domain. The goal of the work presented in this manuscript from the Food Effect PBPK IQ Working Group was to compile a dataset on these studies across pharmaceutical companies and provide recommendations on their conduct. Based on 54 studies collected, we report that most of the repeat food effect studies do not result in meaningful differences in the assessment of the food effect. Seldom changes observed were more than twofold. There was no clear relationship between the change in food effect and the formulation change, indicating that in most cases, once a compound is formulated appropriately within a specific formulation technology, the food effect is primarily driven by inherent compound properties. Representative examples of PBPK models demonstrate that following appropriate validation of the model with the initial food effect study, the models can be applied to future formulations. We recommend that repeat food effect studies should be approached on a case-by-case basis taking into account the totality of the evidence including the use of PBPK modeling.


Assuntos
Interações Alimento-Droga , Modelos Biológicos , Humanos , Solubilidade , Simulação por Computador , Alimentos
2.
Mol Pharm ; 17(2): 361-372, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846335

RESUMO

In October 2016, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) ICH began efforts to provide recommendations to harmonize guidances for biopharmaceutics classification system (BCS)-based biowaivers. Topics to be addressed included consideration of the dose used to classify solubility, tests, and criteria for establishing highly permeable, dissolution conditions, the influence of excipients, and aspects of product strength. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) is a technically focused organization of pharmaceutical and biotechnology companies with a mission of advancing science and technology to augment the capability of member companies to develop transformational solutions that benefit patients, regulators, and the broader R&D community. Its members have substantial expertise in all scientific domains associated with BCS-based waivers and drug product quality, as well as considerable experience in the application of BCS-based biowaivers. The ICH process recognizes that harmonization is achieved through the development of guidelines via a process of scientific consensus with regulatory and industry experts working side-by-side. Thus, to facilitate these efforts and to encourage open and transparent discussion of other perspectives that may exist, IQ offers their perspective on these and related topics.


Assuntos
Biofarmácia/classificação , Química Farmacêutica , Formas de Dosagem , Composição de Medicamentos , Liberação Controlada de Fármacos , Excipientes , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Solubilidade , Equivalência Terapêutica , Água/química
3.
J Pharm Sci ; 108(2): 821-831, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385281

RESUMO

This article describes the discovery and characterization of nanocolloidal structures formed between VX-985 (an orally administered inhibitor of hepatitis C virus protease) and the bile salt, sodium taurocholate at concentrations of the latter >4 mM. These complexes (1) distribute narrowly in size around a mean diameter of 260 nm, (2) separate from solution only with ultracentrifugation, and (3) appear to influence the absorption of VX-985 from the intestinal tract in vivo, in rodents and humans. Although the oral bioavailability of suspensions of its solid forms is poor, addition of vitamin E D-alpha-tocopherol polyethylene glycol 1000 succinate to dosing vehicles improves the fraction absorbed of the compound in vivo. In vitro characterization is compatible with the hypothesis that surfactants like D-alpha-tocopherol polyethylene glycol 1000 succinate preclude nanocolloidal structures and increase the bioavailability by increasing the rate of absorption of VX-985. This study, while specific to VX-985, provides a route to circumvent the poor oral bioavailability caused by formation of kinetically stable complexes between bile salts and drug molecules. This study also underscores the importance of characterizing aggregation phenomenon that may be observed in solubility measurements during preclinical formulation development.


Assuntos
Antivirais/administração & dosagem , Portadores de Fármacos/química , Compostos de Espiro/administração & dosagem , Ácido Taurocólico/química , Vitamina E/química , Administração Oral , Animais , Antivirais/farmacocinética , Disponibilidade Biológica , Coloides/química , Hepacivirus/enzimologia , Hepatite C/tratamento farmacológico , Humanos , Absorção Intestinal , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacocinética , Ratos , Solubilidade , Compostos de Espiro/farmacocinética
4.
Biophys Chem ; 196: 100-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25451684

RESUMO

As compounds are optimized for greater potency during pharmaceutical discovery, their aqueous solubility often decreases, making them less viable as orally-administered drugs. To investigate whether potency and insolubility share a common origin, we examined the structural and thermodynamic properties of telaprevir, a sparingly soluble inhibitor of hepatitis C virus protease. Comparison of the hydrogen bond motifs in crystalline telaprevir with those present in the protease-telaprevir complex revealed striking similarities. Additionally, the thermodynamics of telaprevir dissolution closely resembles those of protein-ligand dissociation. Together, these findings point to a common origin of potency and insolubility rooted in particular amide-amide hydrogen bond patterns. The insolubility of telaprevir is shown by computational analysis to be caused by interactions in the crystal, not unfavorable hydrophobic hydration. Accordingly, competing out the particular amide-amide hydrogen bond motifs in crystalline telaprevir with 4-hydroxybenzoic acid yielded a co-crystalline solid with excellent aqueous dissolution and oral absorption. The analysis suggests a generalizable approach for identifying drug candidate compounds that either can or cannot be rendered orally bioavailable by alteration of their crystalline solid phases, in an approach that provides a pragmatic way to attain substantial enhancements in the success rate of drug discovery and development.


Assuntos
Hepacivirus/enzimologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/química , Ligação de Hidrogênio , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Solubilidade , Temperatura , Termodinâmica , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA