Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482551

RESUMO

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

2.
Isotopes Environ Health Stud ; 54(2): 168-184, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29436855

RESUMO

Anthropogenic nutrient inputs increase the N-load in many aquatic systems, leading to eutrophication and potential changes of biological N-retention capacity. In this study, nitrate inputs in a small river were investigated along a gradient of anthropogenic influence. We aimed to determine changes in nitrate load and isotope signatures in the water column and to identify the anthropogenic influence on biological nitrogen assimilation and nitrification or denitrification in sediments. In seasonal sampling campaigns, we analysed dissolved inorganic nitrogen concentrations, and stable isotopes of nitrate. To differentiate rates of nitrate production and consumption in the pristine vs. agricultural river section, intact sediment cores were incubated with 15N-labelled nitrate. δ15N values of nitrate in the pristine river section were low, reflecting natural sources, but, as expected, increased with nitrate concentration in all seasons along the gradient. In general, nitrate retention and consumption were higher in the anthropogenically impacted than in the pristine river section, and nitrate consumption exceeded production. In addition to our measurements, modelled results also show that even in a small river, the anthropogenically enhanced consumption capacity is overwhelmed by surplus N-inputs, and nitrate consumption cannot increase in turn with external loads.


Assuntos
Isótopos de Nitrogênio/análise , Nitrogênio/análise , Rios/química , Agricultura , Monitoramento Ambiental/métodos , Eutrofização , Alemanha , Nitratos/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA